X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
April 5, 2016

Distinguishing highly similar gene isoforms with a clustering-based bioinformatics analysis of PacBio single-molecule long reads.

Gene isoforms are commonly found in both prokaryotes and eukaryotes. Since each isoform may perform a specific function in response to changing environmental conditions, studying the dynamics of gene isoforms is important in understanding biological processes and disease conditions. However, genome-wide identification of gene isoforms is technically challenging due to the high degree of sequence identity among isoforms. Traditional targeted sequencing approach, involving Sanger sequencing of plasmid-cloned PCR products, has low throughput and is very tedious and time-consuming. Next-generation sequencing technologies such as Illumina and 454 achieve high throughput but their short read lengths are a critical barrier to accurate…

Read More »

January 1, 2016

Effects of genome structure variation, homeologous genes and repetitive DNA on polyploid crop research in the age of genomics.

Compared to diploid species, allopolyploid crop species possess more complex genomes, higher productivity, and greater adaptability to changing environments. Next generation sequencing techniques have produced high-density genetic maps, whole genome sequences, transcriptomes and epigenomes for important polyploid crops. However, several problems interfere with the full application of next generation sequencing techniques to these crops. Firstly, different types of genomic variation affect sequence assembly and QTL mapping. Secondly, duplicated or homoeologous genes can diverge in function and then lead to emergence of many minor QTL, which increases difficulties in fine mapping, cloning and marker assisted selection. Thirdly, repetitive DNA sequences arising…

Read More »

December 3, 2015

Insights into sex chromosome evolution and aging from the genome of a short-lived fish.

The killifish Nothobranchius furzeri is the shortest-lived vertebrate that can be bred in the laboratory. Its rapid growth, early sexual maturation, fast aging, and arrested embryonic development (diapause) make it an attractive model organism in biomedical research. Here, we report a draft sequence of its genome that allowed us to uncover an intra-species Y chromosome polymorphism representing-in real time-different stages of sex chromosome formation that display features of early mammalian XY evolution "in action." Our data suggest that gdf6Y, encoding a TGF-ß family growth factor, is the master sex-determining gene in N. furzeri. Moreover, we observed genomic clustering of aging-related genes,…

Read More »

November 16, 2015

The genomic sequence of lymphocryptovirus from cynomolgus macaque.

Lymphocryptoviruses such as Epstein-Barr virus (EBV) cause persistent infections in human and non-human primates, and suppression of the immune system can increase the risk of lymphocryptovirus (LCV)-associated tumor development in both human and non-human primates. To enable LCV infection as a non-clinical model to study effects of therapeutics on EBV immunity, we determined the genomic DNA sequence of the LCV from cynomolgus macaque, a species commonly used for non-clinical testing. Comparison to rhesus macaque LCV and human EBV sequences indicates that LCV from the cynomolgus macaque has the same genomic arrangement and a high degree of similarity in most genes,…

Read More »

Subscribe for blog updates:

Archives