Menu
July 19, 2019  |  

Complete genome sequence of Tessaracoccus sp. strain T2.5-30 isolated from 139.5 meters deep on the subsurface of the Iberian Pyritic Belt.

Here, we report the complete genome sequence of Tessaracoccus sp. strain T2.5-30, which consists of a chromosome with 3.2 Mbp, 70.4% G+C content, and 3,005 coding DNA sequences. The strain was isolated from a rock core retrieved at a depth of 139.5 m in the subsurface of the Iberian Pyritic Belt (Spain). Copyright © 2017 Leandro et al.


July 7, 2019  |  

Complete genome sequence of Edwardsiella hoshinae ATCC 35051.

Edwardsiella hoshinae is a Gram-negative facultative anaerobe that has primarily been isolated from avians and reptiles. We report here the complete and annotated genome sequence of an isolate from a monitor lizard (Varanus sp.), which contains a chromosome of 3,811,650 bp and no plasmids. Copyright © 2017 Reichley et al.


July 7, 2019  |  

Complete genome sequence of a Paenalcaligenes hominis strain isolated from a paraplegic patient with neurogenic bladder using single-molecule real-time sequencing technology.

The genome of Paenalcaligenes hominis, isolated from a paraplegic patient with neurogenic bladder, was sequenced with the Pacific Biosciences RSII platform. The genome size is 2.68 Mb and includes 3,096 annotated coding sequences, including genes associated with quinone cofactors, which play crucial roles in the virulence of Gram-negative bacteria. Copyright © 2017 Mukhopadhyay et al.


July 7, 2019  |  

Complete genome sequence of the gamma-aminobutyric acid-producing strain Streptococcus thermophilus APC151.

Here is presented the whole-genome sequence of Streptococcus thermophilus APC151, isolated from a marine fish. This bacterium produces gamma-aminobutyric acid (GABA) in high yields and is biotechnologically suitable to produce naturally GABA-enriched biofunctional yogurt. Its complete genome comprises 2,097 genes and 1,839,134 nucleotides, with an average G+C content of 39.1%. Copyright © 2017 Linares et al.


July 7, 2019  |  

Complete genome of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in a Canadian community hospital.

We report here the complete genome sequence of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in Canada. No carbapenemase genes were identified. Carbapenem resistance is attributable to a frameshift in the oprD gene; the basis for colistin resistance remains undetermined. Copyright © 2017 Xiong et al.


July 7, 2019  |  

Complete genome sequence of Dolosigranulum pigrum from a patient with interstitial lung disease using single-molecule real-time sequencing technology.

The whole genome sequence of Dolosigranulum pigrum isolated from the blood of a patient with interstitial lung disease was sequenced with the Pacific Biosciences RS II platform. The genome size is 2.1 Mb with 2,127 annotated coding sequences; it contained two clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems. Copyright © 2017 Mukhopadhyay et al.


July 7, 2019  |  

Evolutionary origin of the staphylococcal cassette chromosome mec (SCCmec).

Several lines of evidence indicate that the most primitive staphylococcal species, those of the Staphylococcus sciuri group, were involved in the first stages of evolution of the staphylococcal cassette chromosome mec (SCCmec), the genetic element carrying the ß-lactam resistance gene mecA However, many steps are still missing from this evolutionary history. In particular, it is not known how mecA was incorporated into the mobile element SCC prior to dissemination among Staphylococcus aureus and other pathogenic staphylococcal species. To gain insights into the possible contribution of several species of the Staphylococcus sciuri group to the assembly of SCCmec, we sequenced the genomes of 106 isolates, comprising S. sciuri (n = 76), Staphylococcus vitulinus (n = 18), and Staphylococcus fleurettii (n = 12) from animal and human sources, and characterized the native location of mecA and the SCC insertion site by using a variety of comparative genomic approaches. Moreover, we performed a single nucleotide polymorphism (SNP) analysis of the genomes in order to understand SCCmec evolution in relation to phylogeny. We found that each of three species of the S. sciuri group contributed to the evolution of SCCmec: S. vitulinus and S. fleurettii contributed to the assembly of the mec complex, and S. sciuri most likely provided the mobile element in which mecA was later incorporated. We hypothesize that an ancestral SCCmec III cassette (an element carried by one of the most epidemic methicillin-resistant S. aureus clones) originated in S. sciuri possibly by a recombination event in a human host or a human-created environment and later was transferred to S. aureus. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Whole-genome sequence of endophytic plant growth-promoting Escherichia coli USML2.

Escherichia coli strain USML2 was originally isolated from the inner leaf tissues of surface-sterilized phytopathogenic-free oil palm (Elaeis guineensis Jacq.). We present here the whole-genome sequence of this plant-endophytic strain. The genome consists of a single circular chromosome of 4,502,758 bp, 4,315 predicted coding sequences, and a G+C content of 50.8%. Copyright © 2017 Tharek et al.


July 7, 2019  |  

Genome mining and predictive functional profiling of acidophilic rhizobacterium Pseudomonas fluorescens Pt14.

Pseudomonas fluorescens Pt14 is a non-pathogenic and acidophilic bacterium isolated from acidic soil (pH 4.65). Genome sequencing of strain Pt14 was performed using Single Molecule Real Time (SMRT) sequencing to get insights into unique existence of this strain in acidic environment. Complete genome sequence of this strain revealed a chromosome of 5,841,722 bp having 5354 CDSs and 88 RNAs. Phylogenomic reconstruction based on 16S rRNA gene, Average Nucleotide Identity (ANI) values and marker proteins revealed that strain Pt14 shared a common clade with P. fluorescens strain A506 and strain SS101. ANI value of strain Pt14 in relation to strain A506 was found 99.23% demonstrating a very close sub-species association at genome level. Further, orthology determination among these three phylogenetic neighbors revealed 4726 core proteins. Functional analysis elucidated significantly higher abundance of sulphur metabolism (>1×) which could be one of the reasons for the survival of strain Pt14 under acidic conditions (pH 4.65). Acidophilic bacteria have capability to oxidize sulphur into sulphuric acid which in turn can make the soil acidic and genome-wide analysis of P. fluorescens Pt14 demonstrated that this strain contributes towards making the soil acidic.


July 7, 2019  |  

Comparative genomic analysis reveals genetic features related to the virulence of Bacillus cereus FORC_013.

Bacillus cereus is well known as a gastrointestinal pathogen that causes food-borne illness. In the present study, we sequenced the complete genome of B. cereus FORC_013 isolated from fried eel in South Korea. To extend our understanding of the genomic characteristics of FORC_013, we conducted a comparative analysis with the published genomes of other B. cereus strains.We fully assembled the single circular chromosome (5,418,913 bp) and one plasmid (259,749 bp); 5511 open reading frames (ORFs) and 283 ORFs were predicted for the chromosome and plasmid, respectively. Moreover, we detected that the enterotoxin (NHE, HBL, CytK) induces food-borne illness with diarrheal symptom, and that the pleiotropic regulator, along with other virulence factors, plays a role in surviving and biofilm formation. Through comparative analysis using the complete genome sequence of B. cereus FORC_013, we identified both positively selected genes related to virulence regulation and 224 strain-specific genes of FORC_013.Through genome analysis of B. cereus FORC_013, we identified multiple virulence factors that may contribute to pathogenicity. These results will provide insight into further studies regarding B. cereus pathogenesis mechanism at the genomic level.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.