X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Friday, January 15, 2021

Virtual Global Summit: Third generation sequencing for diagnosis of rare disease

In this PacBio Virtual Global Summit 2020 presentation, Neil Miller of Children’s Mercy Hospital in Kansas City describes how third generation sequencing offers sensitive single nucleotide variant detection, variant phasing and the ability to detect large structural variants and complex genomic events which may provide utility in the diagnosis of rare disease. This talk will discuss the use of PacBio HiFi whole genome sequencing in the Genomic Answers for Kids program at Children’s Mercy, Kansas City and how these data are being used to search for disease causing variants in cases that have remained unsolved after clinical exome and whole…

Read More »

Thursday, January 7, 2021

Whitepaper: Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.

Read More »

Thursday, January 7, 2021

Application Brief: Variant detection using whole genome sequencing with HiFi reads – Best Practices

With highly accurate long reads (HiFi reads) from the Sequel II System, powered by Single Molecule, Real-Time (SMRT) Sequencing technology, you can comprehensively detect variants in a human genome. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.

Read More »

Thursday, January 7, 2021

Application Brief: Structural variant detection using whole genome sequencing – Best Practices

With the Sequel II System powered by Single Molecule, Real-Time (SMRT) Sequencing technology and SMRT Link v8.0, you can affordably and effectively detect structural variants (SVs), copy number variants, and large indels ranging in size from tens to thousands of base pairs. PacBio long-read whole genome sequencing comprehensively resolves variants in an individual with high precision and recall. For population genetics and pedigree studies, joint calling powers rapid discovery of common variants within a sample cohort.

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: SMRT Sequencing as a translational research tool to investigate germline, somatic and infectious diseases

Melissa Laird Smith discussed how the Icahn School of Medicine at Mount Sinai uses long-read sequencing for translational research. She gave several examples of targeted sequencing projects run on the Sequel System including CYP2D6, phased mutations of GLA in Fabry’s disease, structural variation breakpoint validation in glioblastoma, and full-length immune profiling of TCR sequences.

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: A future of high-quality genomes, transcriptomes, and epigenomes

Jonas Korlach spoke about recent SMRT Sequencing updates, such as latest Sequel System chemistry release (1.2.1) and updates to the Integrative Genomics Viewer that’s now update optimized for PacBio data. He presented the recent data release of structural variation detected in the NA12878 genome, including many more insertions and deletions than short-read-based technologies were able to find.

Read More »

Wednesday, January 6, 2021

Podcast: We’re over halfway there: Baylor’s Richard Gibbs on clinical genetics

In this podcast, Gibbs shares his perspective on the complementary roles genomics and genetics plays in driving our understanding of human biology. Richard says that the Human genome project was actually a departure from had been typical in the field of human genetics. He notes, “there really was this departure between human genetics and genomics for a decade and a half or more, really because of the demands of doing the genome project there was too much to do to stop and think about some of these more fundamental problems in genetics.” Gibbs observes that we have now entered a…

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: Towards precision medicine

Euan Ashley from Stanford University started with the premise that while current efforts in the field of genomics medicine address 30% of patient cases, there’s a need for new approaches to make sense of the remaining 70%. Toward that end, he said that accurately calling structural variants is a major need. In one translational research example, Ashley said that SMRT Sequencing with the Sequel System allowed his team to identify six potentially causative genes in an individual with complex and varied symptoms; one gene was associated with Carney syndrome, which was a match for the person’s physiology and was later…

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: PacBio applications updates & future roadmap

In this ASHG 2017 presentation, Jonas Korlach, the CSO of PacBio shared updates on three applications featuring SMRT Sequencing on the Sequel System, highlighting structural variant detection, targeted sequencing and the Iso-Seq method of RNA sequencing. He provided details on structural variant calling using pbsv to call insertions and deletions and compared PacBio variant calling with other technologies. Korlach described how targeted sequencing can be used to interrogate repeat expansions, detect and phase minor variants and can access medically relevant but previously inaccessible gene targets. He presented research featuring the Iso-Seq method that identified isoforms, corrected previous isoform annotations and…

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: Long-read sequencing for detecting clinically relevant structural variation

In this ASHG 2017 presentation, Han Brunner of Radboud University Medical Center presented research using SMRT Sequencing to detect structural variants to uncover the genetic causes of intellectual disability. He shared that long-read sequencing enabled detection of 25,000 structural variants per genome. Brunner presented data from patient trios to identify de novo structural variant candidates and ongoing validation work to determine the causative mutations of intellectual disability.

Read More »

Wednesday, January 6, 2021

ASHG PacBio Workshop: Multiplatform discovery of haplotype-resolved structural variation in human genome

In this ASHG 2017 presentation, Charles Lee of The Jackson Laboratory for Genomic Medicine presented work from the Human Genome Structural Variation Consortium. He shared data from efforts to utilize multiple platforms for the comprehensive discovery of structural variations—including insertions, deletions, inversions and mobile element insertions—in individual genomes. By combining various technologies, this research identified 7 times more structural variation per person than was previously known to exist.

Read More »

Wednesday, January 6, 2021

Podcast: Huh? 30 million Americans have a rare disease? Howard Jacob on the state of clinical sequencing

Howard Jacob, Chief Genomics Officer at the HudsonAlpha Institute for Biotechnology, explored the role of genomics in diagnosing rare diseases. In this podcast he shared his views on the economics of clinical sequencing and how long-read sequencing is advancing the ability to sequence an individual’s genome –de novo– and use structural variant calling to make clinical diagnoses. He concluded with the hurdles limiting adoption of clinical sequencing and his vision for the future of genomic medicine.

Read More »

Wednesday, January 6, 2021

Video: Structural variant detection with SMRT Sequencing

In this video, Aaron Wenger, a research scientist at PacBio, describes the use of long-read SMRT Sequencing to detect structural variants in the human genome. He shares that structural variations – such as insertions and deletions – impact human traits, cause disease, and differentiate humans from other species. Wenger highlights the use of SMRT Sequencing and structural variant calling software tools in a collaboration with Stanford University which identified a disease-causing genetic mutation.

Read More »

1 2 3

Subscribe for blog updates:

Archives