Menu
July 7, 2019  |  

Complete genome sequence of Spirosoma radiotolerans, a gamma-radiation-resistant bacterium isolated from rice field in South Korea.

Spirosoma radiotolerans is a Gram-negative, short rod-shaped and gamma-radiation-resistant bacterium isolated from rice field in South Korea (GPS; 37°34’30?N, 127°00’30?E). The complete genome of S. radiotolerans consists of a chromosome (7,029,352bp). From the genome sequence database, we have identified the cluster of genes responsible for DNA recovery from ionizing radiation. The key enzymes for the nucleotide excision repair (NER) were investigated and were identified, suggesting that S. radiotolerans DG5A use (NER) pathways for efficient removal of pyrimidine dimers which are the most abundant type of UV-induced damage. Complete genome information enables further studies on the DNA repair mechanisms during the ionizing radiation. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Deinococcus soli N5(T), a gamma-radiation- resistant bacterium isolated from rice field in South Korea.

A Gram-negative, non-motile and short-rod shaped and gamma-radiation-resistant bacterium Deinococcus soli N5(T), isolated from a rice field soil in South Korea. The complete genome of D. soli N5(T) consists of a chromosome (3,236,984bp). The key enzymes for the central DNA repair mechanisms were present in the genome. The enzyme coding genes has been identified which is involving in the nucleotide excision repair (NER) pathway. The gene cluster in the genome sequence suggest that the D. soli N5(T) use (NER) pathways for efficient removal of pyrimidine dimers that are the most abundant type of UV- induced damage. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Deinococcus swuensis, a bacterium resistant to radiation toxicity

Deinococcus swuensis DY59T is a Grampositive, coccus-shaped bacterium. Most members of the genus Deinococcus are able to grow in the presence of high levels of chronic radiation toxicity and desiccation because they can protect enzymes from reactive oxygen species generated during ionizing radiation. The mechanisms behind the resistance to radiation toxicity and the genomic features of resistance could be useful to exploit Deinococcus swuensis in the biotechnological applications such as detoxification of xenobiotic contaminated with radioactive wastes. Strain DY59T showed resistance to gamma radiation with a D10 value (i.e. the dose required to reduce the bacterial population by 10-fold) in excess of 5 kGy. However, the genus Deinococcus is slightly characterized at the genome level, despite its potential importance. Thus, the present study determined the features of Deinococcus swuensis DY59T, as well as its genome sequence and annotation. The genome comprised of 3,531,443 bp with a G + C content of 67.4%, which included 3,305 protein-coding genes and 58 RNA genes. Based on the genome annotation, the strain DY59T undergoes prokaryotic type nucleotide excision repair pathway, restores the damaged gene, and resists the ionizing radiation toxicity.


July 7, 2019  |  

Complete genome sequence of Hymenobacter sedentarius DG5BT, a bacterium resistant to gamma radiation

The ionizing radiation toxicity becomes a primary concern of the world; several exceptional attention was given to the resistance mechanisms of the radiation-resistant bacteria. Hymenobacter sedentarius DG5BT strain isolated from the gamma ray-irradiated soil samples shows resistance against gamma and UV radiation; however, their level of resistance is lower than that of other radiation resistant bacteria. To gain insight of radiation resistance, we carried out the whole genome sequencing of this strain. The genome of DG5BT strain is comprised of 4,868,852 bp (G+C content of 60.96%) including 3,994 protein-coding genes and 55 RNA genes. When compared with other bacteria, there are differences in compositions and copy numbers of several genes involved in DNA repair pathways and defense mechanism against protein damages. In this study, we discuss the implication of such findings concerning other radiation resistant bacteria.


July 7, 2019  |  

Complete genome sequence of Hymenobacter sp. DG25B, a novel bacterium with gamma-radiation resistance isolated from soil in South Korea.

A Gram-negative, rod-shaped, non-motile, gamma and UV radiation resistant bacterium Hymenobacter radioresistens DG25B was isolated from a soil sample collected in South Korea. The complete genome sequence of H. radioresistens DG25B consists of one circular chromosome (3,874,646bp). The bacterium was isolated from gamma ray irradiated soil and contains the genomic features of enzymes involved in the nucleotide excision repair (NER) pathway that protect the damaged DNA. The genome also contains other genes involved in the efficient removal of double-strand breaks (DSB) caused by the ionizing radiations. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

First complete genome sequence of a species in the genus Microterricola, an extremophilic cold active enzyme producing bacterial strain ERGS5:02 isolated from Sikkim Himalaya.

Here, we report the first ever complete genome sequence of any species in the genus Microterricola. The bacterium Microterricola viridarii ERGS5:02 isolated from the glacial stream of Sikkim Himalaya survived at low temperature and exhibited enhanced growth upon UV treatment, in addition, it also produced cold active enzymes. The complete genome assembly of 3.7 Mb suggested for the presence of genetic elements favoring the survival of bacterium under extreme conditions of UV and low temperature besides producing amylase, lipase and protease of industrial relevance. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Hymenobacter sp. strain PAMC26554, an ionizing radiation-resistant bacterium isolated from an Antarctic lichen.

A Gram-negative, rod-shaped, red-pink in color, and UV radiation-resistant bacterium Hymenobacter sp. strain PAMC26554 was isolated from Usnea sp., an Antarctic lichen, and belongs to the class of Cytophagia and the phylum of Bacteroidetes. The complete genome of Hymenobacter sp. PAMC26554 consists of one chromosome (5,244,843bp) with two plasmids (199,990bp and 6421bp). The genomic sequence indicates that Hymenobacter sp. strain PAMC26554 possesses several genes involved in the nucleotide excision repair pathway that protects damaged DNA. This complete genome information will help us to understand its adaptation and novel survival strategy in the Antarctic extreme cold environment. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Frondihabitans sp. strain PAMC28766, a novel carotenoid-producing and radiation-resistant strain isolated from an Antarctic lichen.

Here, we report the first complete genome sequence of Frondihabitans sp. strain PAMC28766, which was found to consist of three plasmids, one chromosome (4,345,897bp), and a series of genes involved in carotenoid biosynthesis and nucleotide excision repair. An analysis of the Frondihabitans sp. PAMC28766 genome will improve our understanding of the carotenoid biosynthesis pathway. Furthermore, the sequence data will provide novel insight into UV radiation-resistance in extremely cold environments. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of ionizing radiation-resistant Hymenobacter sp. strain PAMC26628 isolated from an Arctic lichen.

Ionizing radiation-resistant Hymenobacter sp. strain PAMC26628 was isolated from Stereocaulon sp., an Arctic lichen. Complete genome sequencing of Hymenobacter sp. PAMC26628 revealed one chromosome (5,277,381bp), one plasmid (89,596bp), and several genes involved in nucleotide excision repair, a DNA damage removal pathway. An analysis of the Hymenobacter sp. PAMC26628 genome will help us understand its evolution and provide novel insight into the adaptations that allow this organism to survive in the extreme cold of the Arctic. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of carotenoid-producing Microbacterium sp. strain PAMC28756 isolated from an Antarctic lichen.

Microbacterium sp. strain PAMC28756, of the family Microbacteriaceae, was isolated from Stereocaulon sp., an Antarctic lichen. Complete genome sequencing of Microbacterium sp. PAMC28756 revealed, for the first time in the genus Microbacterium, a series of key genes involved in C50 carotenoid biosynthesis. An analysis of the Microbacterium sp. PAMC28756 genome will lead to a better understanding of the carotenoid biosynthesis pathway. Furthermore, the sequence data will provide novel insight into UV radiation resistance in extremely cold environments. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Deinococcus actinosclerus BM2(T), a bacterium with Gamma-radiation resistance isolated from soil in South Korea.

A Gram-positive, short-rod shaped and non-motile bacterium Deinococcus actinosclerus BM2(T), resistant to gamma and UV radiation, was isolated from a soil sample collected in South Korea. Strain BM2(T) showed high resistance to gamma radiation with D10 value of 9 kGy. The complete genome of D. actinosclerus BM2(T) consists of a single chromosome (3,264,334bp). The genome features showed the presence of intracellular proteases that help to eliminate radiation-induced ROS during recovery from ionizing radiation damage. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Rufibacter sp. DG31D, a bacterium resistant to gamma and UV radiation toxicity

The ionizing radiation toxicity becomes a major concern for the modern world, recent years, several special interest has been given to the research for the radiation resistant and the mechanisms of which the radiation resistant bacteria survive after the irradiation. In the current study, we have isolated strain DG31D was isolated from gamma ray-irradiated soil sample and showed resistant to gamma and UV radiation. The aim of this study is to understanding the radiation resistant mechanisms and their genomic features of the strain DG31D, which can be potentially used for the biotechnological application to degrade harmful soil contamination near the nuclear power stations and other radiation-affected areas. Strain DG31D showed resistant to UV and gamma radiation with D10 value of 10 kGy. The genome comprised of 4,820,793 bp with the G+C content of 51.4%. It contains the genomic features of enzymes involved in the nucleotide excision repair (NER) pathway that protect the damaged DNA.


July 7, 2019  |  

Complete genome sequence of UV-resistant Campylobacter jejuni RM3194, including an 81.08-kilobase plasmid.

Campylobacter jejuni strain RM3194 was originally isolated from a human with enteritis and contains a novel 81,079-bp plasmid. RM3194 has exhibited superior survival compared to other Campylobacter jejuni strains when challenged with UV light. The chromosome of RM3194 was determined to be 1,651,183 bp, with a G+C content of 30.5%. Copyright © 2016 Gunther et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.