fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Whole-genome sequence of endophytic plant growth-promoting Escherichia coli USML2.

Escherichia coli strain USML2 was originally isolated from the inner leaf tissues of surface-sterilized phytopathogenic-free oil palm (Elaeis guineensis Jacq.). We present here the whole-genome sequence of this plant-endophytic strain. The genome consists of a single circular chromosome of 4,502,758 bp, 4,315 predicted coding sequences, and a G+C content of 50.8%. Copyright © 2017 Tharek et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of a Legionella longbeachae serogroup 1 strain isolated from a patient with Legionnaires’ disease.

Legionella longbeachae serogroup 1, predominantly found in soil and composted plant material, causes the majority of cases of Legionnaires’ disease (LD) in New Zealand. Here, we report the complete genome sequence of an L. longbeachae serogroup 1 (sg1) isolate derived from a patient hospitalized with LD in Christchurch, New Zealand. Copyright © 2017 Slow et al.

Read More »

Sunday, July 7, 2019

Coping with living in the soil: the genome of the parthenogenetic springtail Folsomia candida.

Folsomia candida is a model in soil biology, belonging to the family of Isotomidae, subclass Collembola. It reproduces parthenogenetically in the presence of Wolbachia, and exhibits remarkable physiological adaptations to stress. To better understand these features and adaptations to life in the soil, we studied its genome in the context of its parthenogenetic lifestyle.We applied Pacific Bioscience sequencing and assembly to generate a reference genome for F. candida of 221.7 Mbp, comprising only 162 scaffolds. The complete genome of its endosymbiont Wolbachia, was also assembled and turned out to be the largest strain identified so far. Substantial gene family expansions…

Read More »

Sunday, July 7, 2019

Comparative genomic analysis reveals genetic features related to the virulence of Bacillus cereus FORC_013.

Bacillus cereus is well known as a gastrointestinal pathogen that causes food-borne illness. In the present study, we sequenced the complete genome of B. cereus FORC_013 isolated from fried eel in South Korea. To extend our understanding of the genomic characteristics of FORC_013, we conducted a comparative analysis with the published genomes of other B. cereus strains.We fully assembled the single circular chromosome (5,418,913 bp) and one plasmid (259,749 bp); 5511 open reading frames (ORFs) and 283 ORFs were predicted for the chromosome and plasmid, respectively. Moreover, we detected that the enterotoxin (NHE, HBL, CytK) induces food-borne illness with diarrheal symptom, and…

Read More »

Sunday, July 7, 2019

The effects of signal erosion and core genome reduction on the identification of diagnostic markers.

Whole-genome sequence (WGS) data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives.A comparative analysis of 1,130 Burkholderia genomes identified unique markers for many named species, including the human pathogens B. pseudomallei and B. mallei Due to core genome reduction…

Read More »

1 2

Subscribe for blog updates:

Archives

Search

Categories

Press Release

PacBio Grants Equity Incentive Award to New Employee

Friday, November 19, 2021

Stay
Current

Visit our blog »