Menu
July 7, 2019  |  

Whole-genome sequencing of an NDM-1- and OXA-58-producing Acinetobacter towneri isolate from hospital sewage in Sichuan Province, China.

Acinetobacter spp. isolates carrying the blaNDM-1 gene are frequently reported. However, most reported blaNDM-1 genes are carried by clinical strains. Here we report a carbapenem-resistant Acinetobacter towneri isolate from hospital sewage in China co-harbouring blaNDM-1 and blaOXA-58 in the genome.Whole-genome sequencing was performed using a single molecule, real-time (SMRT) sequencing platform with a Pacific Biosciences RS II Sequencer and MiSeq system. Reads were de novo assembled using Celera Assembler v.8.0. Genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP), and the genome sequence was analysed by bioinformatics methods.The 2963729-bp genome with a G+C content of 41.30% displayed 11 antimicrobial resistance genes, including blaNDM-1 and blaOXA-58. Meanwhile, 2 plasmids and 19 genomic islands were predicted within the genome.The whole-genome sequence reported here can be compared with other genomes of NDM-1-producing Acinetobacter spp. These data could facilitate further understanding of the specific genomic features of carbapenem-resistant Acinetobacter spp. in China. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Streptacidiphilus sp. strain 15-057A, obtained from bronchial lavage fluid.

Streptacidiphilus sp. strain 15-057A was isolated from a bronchial lavage sample and represents the only member of the genus not isolated from acidic soils. A single circular chromosome of 7.01?Mb was obtained by combining Illumina and PacBio sequencing data. Bioinformatic analysis detected 63 putative secondary biosynthetic gene clusters and recognized 43 transposons.


July 7, 2019  |  

Emergence of tigecycline resistance in Escherichia coli co-producing MCR-1 and NDM-5 during tigecycline salvage treatment.

Here, we report a case of severe infection caused by Escherichia coli that harbored mcr-1, blaNDM-5, and acquired resistance to tigecycline during tigecycline salvage therapy.Antimicrobial susceptibility testing, Southern blot hybridization, and complete genome sequence of the strains were carried out. The genetic characteristics of the mcr-1 and blaNDM-5 plasmids were analyzed. The whole genome sequencing of mcr-1-containing plasmid was completed. Finally, putative single nucleotide polymorphisms and deletion mutations in the tigecycline-resistant strain were predicted.Three E. coli isolates were obtained from ascites, pleural effusion, and stool of a patient; they were resistant to almost all the tested antibiotics. The first two strains separated from ascites (E-FQ) and hydrothorax (E-XS) were susceptible to amikacin and tigecycline; however, the third strain from stool (E-DB) was resistant to tigecycline after nearly 3 weeks’ treatment with tigecycline. All three isolates possessed both mcr-1 and blaNDM-5. The blaNDM-5 gene was found on the IncX3 plasmid, whereas the mcr-1, fosA3 and blaCTX-M-14 were located on the IncHI2 plasmid. Mutations in acrB and lon were the reason for the resistance to tigecycline.This is the first report of a colistin-, carbapenem-, and tigecycline-resistant E. coli in China. Tigecycline resistance acquired during tigecycline therapy is of great concern for us because tigecycline is a drug of last resort to treat carbapenem-resistant Gram-negative bacterial infections. Furthermore, the transmission of such extensively drug-resistant isolates may pose a great threat to public health.


July 7, 2019  |  

Complete genome sequence of the Arcobacter halophilus type strain CCUG 53805.

Many Arcobacter spp. are free living and are routinely recovered from marine environments. Arcobacter halophilus was isolated from hypersaline lagoon water in the Hawaiian islands, and it was demonstrated to be an obligate halophile. This study describes the complete whole-genome sequence of the A. halophilus type strain, CCUG 53805 (= LA31BT = ATCC BAA-1022T).


July 7, 2019  |  

The ß-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of Enterobacter cloacae.

In this work, by high-throughput sequencing, antibiotic resistance genes, including class A (blaCTX-M, blaZ, blaTEM, blaVEB, blaKLUC, and blaSFO), class C (blaSHV, blaDHA, blaMIR, blaAZECL-29, and blaACT), and class D (blaOXA) ß-lactamase genes, were identified among the pooled genomic DNA from 212 clinical Enterobacter cloacae isolates. Six blaMIR-positive E. cloacae strains were identified, and pulsed-field gel electrophoresis (PFGE) showed that these strains were not clonally related. The complete genome of the blaMIR-positive strain (Y546) consisted of both a chromosome (4.78?Mb) and a large plasmid pY546 (208.74?kb). The extended-spectrum ß-lactamases (ESBLs) (blaSHV-12 and blaCTX-M-9a) and AmpC (blaMIR) were encoded on the chromosome, and the pY546 plasmid contained several clusters of genes conferring resistance to metals, such as copper (pco), arsenic (ars), tellurite (ter), and tetrathionate (ttr), and genes encoding many divalent cation transporter proteins. The comparative genomic analyses of the whole plasmid sequence and of the heavy metal resistance gene-encoding regions revealed that the plasmid sequences of Klebsiella pneumoniae (such as pKPN-332, pKPN-3967, and pKPN-262) shared the highest similarity with those of pY546. It may be concluded that a variety of ß-lactamase genes present in E. cloacae which confer resistance to ß-lactam antibiotics and the emergence of plasmids carrying heavy metal resistance genes in clinical isolates are alarming and need further surveillance.


July 7, 2019  |  

Complete genome of the multidrug-resistant Escherichia coli strain KBN10P04869 isolated from a patient with acute myeloid leukemia

Recently, we isolated a multidrug-resistant Escherichia coli strain KBN10P04869 from a patient with acute myeloid leukemia. We report the complete genome of this strain which consists of 5,104,264 bp with 4,457 protein-coding genes, 88 tRNAs, and 22 rRNAs, and the co-occurrence of multidrug- resistant genes including bla CMY-2, bla TEM-1, bla CTX-M-15, bla NDM-5, and blaOXA-18.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.