X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of community-acquired Klebsiella pneumoniae KP36, a strain isolated from a patient with an upper urinary tract infection.

Here, we announce the complete genome sequence of Klebsiella pneumoniae KP36, a strain isolated from a patient with a severe community-acquired urinary tract infection. This genome provides insights into the pathogenesis of a pandemic K. pneumoniae strain from a community-acquired urinary tract infection. Copyright © 2016 Lin et al.

Read More »

Sunday, July 7, 2019

Complete genome sequence of Mycobacterium chimaera strain AH16.

Mycobacterium chimaera is a nontuberculous mycobacterial species that causes cardiovascular, pulmonary, and postsurgical infections. Here, we report the first complete genome sequence of M. chimaera This genome is 6.33 Mbp, with a G+C content of 67.56%, and encodes 4,926 protein-coding genes, as well as 74 tRNAs, one ncRNA, and three rRNA genes. Copyright © 2016 Hasan et al.

Read More »

Sunday, July 7, 2019

Complete genome sequences of six Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway.

Here, we report the complete genome sequences of Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway. One clinical and two environmental isolates were sequenced from each outbreak. The genome of all six isolates consisted of a 3.36 Mb-chromosome, while the 2005 genomes featured an additional 68 kb-episome sharing high sequence similarity with the L. pneumophila Lens plasmid. All six genomes contained multiple mobile genetic elements including novel combinations of type-IVA secretion systems. A comparative genomics study will be launched to resolve the genetic relationship between the L. pneumophila isolates. Copyright © 2016 Dybwad et al.

Read More »

Sunday, July 7, 2019

Listeria monocytogenes in stone fruits linked to a multistate outbreak: enumeration of cells and whole-genome sequencing.

In 2014, the identification of stone fruits contaminated with Listeria monocytogenes led to the subsequent identification of a multistate outbreak. Simultaneous detection and enumeration of L. monocytogenes were performed on 105 fruits, each weighing 127 to 145 g, collected from 7 contaminated lots. The results showed that 53.3% of the fruits yielded L. monocytogenes (lower limit of detection, 5 CFU/fruit), and the levels ranged from 5 to 2,850 CFU/fruit, with a geometric mean of 11.3 CFU/fruit (0.1 CFU/g of fruit). Two serotypes, IVb-v1 and 1/2b, were identified by a combination of PCR- and antiserum-based serotyping among isolates from fruits and…

Read More »

Sunday, July 7, 2019

Genomewide Dam methylation in Escherichia coli during long-term stationary phase.

DNA methylation in prokaryotes is widespread. The most common modification of the genome is the methylation of adenine at the N-6 position. In Escherichia coli K-12 and many gammaproteobacteria, this modification is catalyzed by DNA adenine methyltransferase (Dam) at the GATC consensus sequence and is known to modulate cellular processes including transcriptional regulation of gene expression, initiation of chromosomal replication, and DNA mismatch repair. While studies thus far have focused on the motifs associated with methylated adenine (meA), the frequency of meA across the genome, and temporal dynamics during early periods of incubation, here we conduct the first study on…

Read More »

Sunday, July 7, 2019

Genome sequence of a commensal bacterium, Enterococcus faecalis CBA7120, isolated from a Korean fecal sample.

Enterococcus faecalis, the type strain of the genus Enterococcus, is not only a commensal bacterium in the gastrointestinal tract in vertebrates and invertebrates, but also causes serious disease as an opportunistic pathogen. To date, genome sequences have been published for over four hundred E. faecalis strains; however, pathogenicity of these microbes remains complicated. To increase our knowledge of E. faecalis virulence factors, we isolated strain CBA7120 from the feces of an 81-year-old female from the Republic of Korea and performed a comparative genomic analysis.The genome sequence of E. faecalis CBA7120 is 3,134,087 bp in length, with a G + C content of 37.35 mol%,…

Read More »

Sunday, July 7, 2019

Whole genome sequence and comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii.

Borrelia mayonii, a Borrelia burgdorferi sensu lato (Bbsl) genospecies, was recently identified as a cause of Lyme borreliosis (LB) among patients from the upper midwestern United States. By microscopy and PCR, spirochete/genome loads in infected patients were estimated at 105 to 106 per milliliter of blood. Here, we present the full chromosome and plasmid sequences of two B. mayonii isolates, MN14-1420 and MN14-1539, cultured from blood of two of these patients. Whole genome sequencing and assembly was conducted using PacBio long read sequencing (Pacific Biosciences RSII instrument) followed by hierarchical genome-assembly process (HGAP). The B. mayonii genome is ~1.31 Mbp…

Read More »

Sunday, July 7, 2019

Genome sequence and comparative pathogenic determinants of multidrug resistant uropathogenic Escherichia coli O25b: H4, A clinical isolate from Saudi Arabia

Escherichia coli serotype O25b:H4 is involved in human urinary tract infections.In this study, we sequenced and analyzed E. coli O25b:H4 isolated from a patient sufferingfrom recurring UTI infections in an intensive care unit at Hera General Hospital inMakkah, Saudi Arabia. We aimed to determine the virulence genes for pathogenesis anddrug resistance of this isolate compared to other E. coli strains. We sequenced and analyzedthe E. coli O25b:H4 Saudi strain clinical isolate using next generation sequencing. Usingthe ERGO genome analysis platform, we performed annotations and identified virulenceand antibiotic resistance determinants of this clinical isolate. The E. coli O25b:H4 genomewas assembled into…

Read More »

Sunday, July 7, 2019

Improve homology search sensitivity of PacBio data by correcting frameshifts.

Single-molecule, real-time sequencing (SMRT) developed by Pacific BioSciences produces longer reads than secondary generation sequencing technologies such as Illumina. The long read length enables PacBio sequencing to close gaps in genome assembly, reveal structural variations, and identify gene isoforms with higher accuracy in transcriptomic sequencing. However, PacBio data has high sequencing error rate and most of the errors are insertion or deletion errors. During alignment-based homology search, insertion or deletion errors in genes will cause frameshifts and may only lead to marginal alignment scores and short alignments. As a result, it is hard to distinguish true alignments from random alignments…

Read More »

Sunday, July 7, 2019

Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium.

Protection against enteric infections, also termed colonization resistance, results from mutualistic interactions of the host and its indigenous microbes. The gut microbiota of humans and mice is highly diverse and it is therefore challenging to assign specific properties to its individual members. Here, we have used a collection of murine bacterial strains and a modular design approach to create a minimal bacterial community that, once established in germ-free mice, provided colonization resistance against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Initially, a community of 12 strains, termed Oligo-Mouse-Microbiota (Oligo-MM(12)), representing members of the major bacterial phyla in…

Read More »

Sunday, July 7, 2019

Efficient, cost-effective, high-throughput, Multilocus Sequencing Typing (MLST) method, NGMLST, and the analytical software program MLSTEZ.

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species. It can be used to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. However, conventional MLST is costly and time consuming, which limits its power for genotyping large numbers of samples. Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in a single assay.

Read More »

Sunday, July 7, 2019

Characterization of tet(Y)-carrying LowGC plasmids exogenously captured from cow manure at a conventional dairy farm.

Manure from dairy farms has been shown to contain diverse tetracycline resistance genes that are transferable to soil. Here, we focus on conjugative plasmids that may spread tetracycline resistance at a conventional dairy farm. We performed exogenous plasmid isolation from cattle feces using chlortetracycline for transconjugant selection. The transconjugants obtained harbored LowGC-type plasmids and tet(Y). A representative plasmid (pFK2-7) was fully sequenced and this was compared with previously described LowGC plasmids from piggery manure-treated soil and a GenBank record from Acinetobacter nosocomialis that we also identified as a LowGC plasmid. The pFK2-7 plasmid had the conservative backbone typical of LowGC…

Read More »

Sunday, July 7, 2019

Genomic insights into a sustained national outbreak of Yersinia pseudotuberculosis.

In 2014, a sustained outbreak of yersiniosis due to Yersinia pseudotuberculosis occurred across all major cities in New Zealand (NZ), with a total of 220 laboratory-confirmed cases, representing one of the largest ever reported outbreaks of Y. pseudotuberculosis. Here, we performed whole genome sequencing of outbreak-associated isolates to produce the largest population analysis to date of Y. pseudotuberculosis, giving us unprecedented capacity to understand the emergence and evolution of the outbreak clone. Multivariate analysis incorporating our genomic and clinical epidemiological data strongly suggested a single point-source contamination of the food chain, with subsequent nationwide distribution of contaminated produce. We additionally…

Read More »

1 87 88 89 90 91 98

Subscribe for blog updates:

Archives