X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Molecular Characterization of a Multidrug-Resistant Klebsiella pneumoniae Strain R46 Isolated from a Rabbit

To investigate the mechanisms of multiple resistance and the horizontal transfer of resistance genes in animal pathogens, we characterized the molecular structures of the resistance gene-related sequences in a multidrug-resistant Klebsiella pneumoniae strain R46 isolated from a rabbit. Molecular cloning was performed to clone the resistance genes, and minimum inhibitory concentrations (MICs) were measured to determine the resistance characteristics of the cloned genes and related strains. A conjugation experiment was conducted to assess the transferability of the resistance plasmids. Sequencing and comparative genomic methods were used to analyze the structures of the resistance gene-related sequences. The K. pneumoniae R46 genome…

Read More »

Tuesday, April 21, 2020

Impact of antibiotic treatment and host innate immune pressure on enterococcal adaptation in the human bloodstream.

Multidrug-resistant enterococcal strains emerged in the early 1980s and are now among the leading causes of drug-resistant bacterial infection worldwide. We used functional genomics to study an early bacterial outbreak in patients in a Wisconsin hospital between 1984 and 1988 that was caused by multidrug-resistant Enterococcus faecalis The goal was to determine how a clonal lineage of E. faecalis became adapted to growth and survival in the human bloodstream. Genome sequence analysis revealed a progression of increasingly fixed mutations and repeated independent occurrences of mutations in a relatively small set of genes. Repeated independent mutations suggested selection within the host…

Read More »

Tuesday, April 21, 2020

Rapid transcriptional responses to serum exposure are associated with sensitivity and resistance to antibody-mediated complement killing in invasive Salmonella Typhimurium ST313

Background: Salmonella Typhimurium ST313 exhibits signatures of adaptation to invasive human infection, including higher resistance to humoral immune responses than gastrointestinal isolates. Full resistance to antibody-mediated complement killing (serum resistance) among nontyphoidal Salmonellae is uncommon, but selection of highly resistant strains could compromise vaccine-induced antibody immunity. Here, we address the hypothesis that serum resistance is due to a distinct genotype or transcriptome response in S. Typhimurium ST313.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of Enterococcus faecalis Strain SGAir0397, Isolated from a Tropical Air Sample Collected in Singapore.

Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs.Copyright © 2019 Purbojati et al.

Read More »

Tuesday, April 21, 2020

Whole-Genome Sequencing of a Brucella melitensis Strain (BMWS93) Isolated from a Bank Clerk and Exhibiting Complete Resistance to Rifampin.

Human brucellosis has become the most severe public health problem in the Ulanqab region of Inner Mongolia, China. Brucella melitensis BMWS93 was obtained from a blood sample taken from a bank clerk in the Ulanqab region of Inner Mongolia, China, and antimicrobial susceptibility testing in vitro showed no zone of inhibition, which confirmed resistance to rifampin. Therefore, whole-genome sequencing of this isolate was performed to better understand the mechanism of this resistance.Copyright © 2019 Liu et al.

Read More »

Tuesday, April 21, 2020

Complete Genome and Plasmid Sequences of Seven Isolates of Salmonella enterica subsp. enterica Harboring the mcr-1 Gene Obtained from Food in China.

Seven Salmonella enterica subsp. enterica isolates were identified as carrying the mcr-1 gene, by using a real-time fluorescence quantitative PCR method, from a total of 2,558 isolates which were cultured from various food origins in China between 2011 and 2016. Few complete genomes of Salmonella strains harboring the mcr-1 gene have been reported to date, so we report here the complete genome and plasmid sequences of all of these isolates to provide useful references for understanding the prevalence of foodborne Salmonella enterica subsp. enterica isolates carrying mcr-1.Copyright © 2019 Hu et al.

Read More »

Tuesday, April 21, 2020

Assembly of Complete Genome Sequences of Negative-Control and Experimental Strain Variants of Staphylococcus aureus ATCC BAA-39 Selected under the Effect of the Drug FS-1, Which Induces Antibiotic Resistance Reversion.

Staphylococcus aureus ATCC BAA-39 is the reference organism for a multidrug-resistant Staphylococcus aureus (MRSA) strain that was used to study drug-induced resistance reversion by an iodine-containing nanomolecular complex, FS-1. PacBio sequencing was performed on both the experimental and control strains, followed by genome assembly, variant calling, and DNA modification profiling.Copyright © 2019 Joubert et al.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of GD1108, a Moderate-Virulence Strain of Human-Associated ST398 Methicillin-Susceptible Staphylococcus aureus.

Staphylococcus aureus multilocus sequence type 398 (ST398) is responsible for an increasing number of severe infections in humans. There are no reports detailing if all ST398 strains are equally virulent. We present the genome sequence of the moderate-virulence ST398 methicillin-susceptible Staphylococcus aureus strain GD1108, determined in a Caenorhabditis elegans infection model, to reveal the ST398 sublineage virulence.Copyright © 2019 McClure et al.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of GD1696, a Low-Virulence Strain of Human-Associated ST398 Methicillin-Susceptible Staphylococcus aureus.

The emerging livestock-associated Staphylococcus aureus multilocus sequence type 398 (ST398) appears to have augmented virulence in humans. However, it is unclear if all ST398 strains are equally virulent. Here, we present the chromosomal sequence of a low-virulence ST398 methicillin-susceptible S. aureus (MSSA) strain, GD1696, to investigate ST398 sublineage virulence.Copyright © 2019 McClure et al.

Read More »

Tuesday, April 21, 2020

Draft Genome Sequences of Shiga Toxin-Producing Escherichia coli O157:H7 Strains Recovered from a Major Production Region for Leafy Greens in California.

Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen and is responsible for outbreaks of human gastroenteritis. This report documents the draft genome sequences of nine O157:H7 cattle strains, which were identified to be PCR positive for a Shiga toxin gene but displayed different levels of functional toxin activity.

Read More »

Tuesday, April 21, 2020

Complete Genome Sequence of GD487, a High-Virulence Strain of Human-Associated ST398 Methicillin-Susceptible Staphylococcus aureus.

Multilocus sequence type 398 (ST398) methicillin-susceptible Staphylococcus aureus (MSSA) has been shown to have augmented pathogenicity in humans. However, it has not been determined whether all ST398 strains are equally virulent. We present here the genome sequence of a high-virulence ST398 MSSA strain, GD487, to explore potential insights into ST398 virulence.Copyright © 2019 McClure et al.

Read More »

Tuesday, April 21, 2020

Complete Whole-Genome Sequences of Two Raoultella terrigena Strains, NCTC 13097 and NCTC 13098, Isolated from Human Cases.

Raoultella terrigena is a bacterial species associated with soil and aquatic environments; however, sporadic cases of opportunistic disease in humans have been reported. Here, we report the first two complete genome sequences from clinical strains isolated from human sources that have been deposited in the National Collection of Type Cultures (NCTC). © Crown copyright 2019.

Read More »

1 2 3 4 5 6 99

Subscribe for blog updates:

Archives