July 7, 2019  |  

Complete genome sequence of Pseudomonas aeruginosa mucoid strain FRD1, isolated from a cystic fibrosis patient.

We announce here the complete genome sequence of the Pseudomonas aeruginosa mucoid strain FRD1, isolated from the sputum of a cystic fibrosis patient. The complete genome of P. aeruginosa FRD1 is 6,712,339 bp. This genome will allow comparative genomics to be used to identify genes associated with virulence, especially those involved in chronic pulmonary infections. Copyright © 2015 Silo-Suh et al.


July 7, 2019  |  

Sequencing of plasmids pAMBL1 and pAMBL2 from Pseudomonas aeruginosa reveals a blaVIM-1 amplification causing high-level carbapenem resistance.

Carbapenemases are a major concern for the treatment of infectious diseases caused by Gram-negative bacteria. Although plasmids are responsible for the spread of resistance genes among these pathogens, there is limited information on the nature of the mobile genetic elements carrying carbapenemases in Pseudomonas aeruginosa.We combined data from two different next-generation sequencing platforms, Illumina HiSeq2000 and PacBio RSII, to obtain the complete nucleotide sequences of two blaVIM-1-carrying plasmids (pAMBL1 and pAMBL2) isolated from P. aeruginosa clinical isolates.Plasmid pAMBL1 has 26?440 bp and carries a RepA_C family replication protein. pAMBL1 is similar to plasmids pNOR-2000 and pKLC102 from P. aeruginosa and pAX22 from Achromobacter xylosoxidans, which also carry VIM-type carbapenemases. pAMBL2 is a 24?133 bp plasmid with a replication protein that belongs to the Rep_3 family. It shows a high degree of homology with a fragment of the blaVIM-1-bearing plasmid pPC9 from Pseudomonas putida. Plasmid pAMBL2 carries three copies of the blaVIM-1 cassette in an In70 class 1 integron conferring, unlike pAMBL1, high-level resistance to carbapenems.We present two new plasmids coding for VIM-1 carbapenemase from P. aeruginosa and report that the presence of three copies of blaVIM-1 in pAMBL2 produces high-level resistance to carbapenems.© The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Whole genome sequence of Pseudomonas aeruginosa F9676, an antagonistic bacterium isolated from rice seed.

Pseudomonas aeruginosa is a group of bacteria, which can be isolated from diverse ecological niches. P. aeruginosa strain F9676 was first isolated from a rice seed sample in 2003. It showed strong antagonism against several plant pathogens. In this study, whole genome sequencing was carried out. The total genome size of F9676 is 6368,008bp with 5586 coding genes (CDS), 67 tRNAs and 3 rRNAs. The genome sequence of F9676 may shed a light on antagonism P. aeruginosa. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Keeping an eye on P. aeruginosa.

This month’s Genome Watch looks at how whole-genome sequencing (WGS) can be used to track the source of Pseudomonas aeruginosa infection and to investigate the transition and adaptation of this opportunistic pathogen from the environment to the human host.


July 7, 2019  |  

First complete genome sequence of Pseudomonas aeruginosa (Schroeter 1872) Migula 1900 (DSM 50071T), determined using PacBio Single-Molecule Real-Time Technology.

The first complete genome sequence of the type strain Pseudomonas aeruginosa (Schroeter 1872) Migula 1900 (DSM 50071(T)) was determined in a single contig by PacBio RS II. The genome (6,317,050 bp, G+C content of 66.52%) contained 10 sets of >1,000-bp identical sequence pairs and 183 tandem repeats. Copyright © 2015 Nakano et al.


July 7, 2019  |  

Complete genome sequence of Pseudomonas aeruginosa PA1, isolated from a patient with a respiratory tract infection.

We report the 6,498,072-bp complete genome sequence of Pseudomonas aeruginosa PA1, which was isolated from a patient with a respiratory tract infection in Chongqing, People’s Republic of China. Whole-genome sequencing was performed using single-molecule real-time (SMRT) technology, and de novo assembly revealed a single contig with 396-fold sequence coverage. Copyright © 2015 Lu et al.


July 7, 2019  |  

Complete genome sequence of highly adherent Pseudomonas aeruginosa small-colony variant SCV20265.

The evolution of small-colony variants within Pseudomonas aeruginosa populations chronically infecting the cystic fibrosis lung is one example of the emergence of adapted subpopulations. Here, we present the complete genome sequence of the autoaggregative and hyperpiliated P. aeruginosa small-colony variant SCV20265, which was isolated from a cystic ?brosis (CF) patient.


July 7, 2019  |  

Seeking the source of Pseudomonas aeruginosa infections in a recently opened hospital: an observational study using whole-genome sequencing.

Pseudomonas aeruginosa is a common nosocomial pathogen responsible for significant morbidity and mortality internationally. Patients may become colonised or infected with P. aeruginosa after exposure to contaminated sources within the hospital environment. The aim of this study was to determine whether whole-genome sequencing (WGS) can be used to determine the source in a cohort of burns patients at high risk of P. aeruginosa acquisition.An observational prospective cohort study.Burns care ward and critical care ward in the UK.Patients with >7% total burns by surface area were recruited into the study.All patients were screened for P. aeruginosa on admission and samples taken from their immediate environment, including water. Screening patients who subsequently developed a positive P. aeruginosa microbiology result were subject to enhanced environmental surveillance. All isolates of P. aeruginosa were genome sequenced. Sequence analysis looked at similarity and relatedness between isolates.WGS for 141 P. aeruginosa isolates were obtained from patients, hospital water and the ward environment. Phylogenetic analysis revealed eight distinct clades, with a single clade representing the majority of environmental isolates in the burns unit. Isolates from three patients had identical genotypes compared with water isolates from the same room. There was clear clustering of water isolates by room and outlet, allowing the source of acquisitions to be unambiguously identified. Whole-genome shotgun sequencing of biofilm DNA extracted from a thermostatic mixer valve revealed this was the source of a P. aeruginosa subpopulation previously detected in water. In the remaining two cases there was no clear link to the hospital environment.This study reveals that WGS can be used for source tracking of P. aeruginosa in a hospital setting, and that acquisitions can be traced to a specific source within a hospital ward. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.


July 7, 2019  |  

Identification of a Pseudomonas aeruginosa PAO1 DNA methyltransferase, its targets, and physiological roles.

DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N(6)-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats.IMPORTANCE With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria. Copyright © 2017 Doberenz et al.


July 7, 2019  |  

Complete genome sequence of a versatile hydrocarbon degrader, Pseudomonas aeruginosa DN1 isolated from petroleum-contaminated soil.

Pseudomonas aeruginosa DN1 was isolated from a petroleum-contaminated soil from Changqing Oilfield with its capability to degrade high molecular weight polycyclic aromatic hydrocarbons (HMW PAHs) and crude oil. Herein, the whole genome sequence analysis of P. aeruginosa strain DN1 was reported, consisting of a size of 6,641,902 bp chromosome assembled genome (67.09 mol% G + C content) and a 317,349 bp plasmid assembled genome (57.01 mol% G + C content). According to the genome information, strain DN1 encodes various genes related to degradation of aliphatic hydrocarbons and aromatic compounds. In addition, DN1 contains gene clusters for biosynthesis and regulation of biosurfactant rhamnolipids. These genes may serve as a basis of further elucidation of the genetic background of this promising strain, and provide insights into investigating the metabolic and regulatory mechanisms of hydrocarbon biodegradation.


July 7, 2019  |  

Complete genome of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in a Canadian community hospital.

We report here the complete genome sequence of a panresistant Pseudomonas aeruginosa strain, isolated from a patient with respiratory failure in Canada. No carbapenemase genes were identified. Carbapenem resistance is attributable to a frameshift in the oprD gene; the basis for colistin resistance remains undetermined. Copyright © 2017 Xiong et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.