X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
March 1, 2019

Whole Genome Analysis of Lactobacillus plantarum Strains Isolated From Kimchi and Determination of Probiotic Properties to Treat Mucosal Infections by Candida albicans and Gardnerella vaginalis.

Three Lactobacillus plantarum strains ATG-K2, ATG-K6, and ATG-K8 were isolated from Kimchi, a Korean traditional fermented food, and their probiotic potentials were examined. All three strains were free of antibiotic resistance, hemolysis, and biogenic amine production and therefore assumed to be safe, as supported by whole genome analyses. These strains demonstrated several basic probiotic functions including a wide range of antibacterial activity, bile salt hydrolase activity, hydrogen peroxide production, and heat resistance at 70°C for 60 s. Further studies of antimicrobial activities against Candida albicans and Gardnerella vaginalis revealed growth inhibitory effects from culture supernatants, coaggregation effects, and killing effects…

Read More »

October 1, 2018

Staying alive: growth and survival of Bifidobacterium animalis subsp. animalis under in vitro and in vivo conditions.

Members of the Bifidobacterium genus are widely used as probiotics in fermented milk products. Bifidobacterium animalis subsp. animalis CNCM I-4602 grows and survives poorly in reconstituted skimmed milk (RSM). Availing of genome and transcriptome information, this poor growth and survival phenotype in milk was substantially improved by the addition of certain compounds, such as yeast extract, uric acid, glutathione, cysteine, ferrous sulfate, and a combination of magnesium sulfate and manganese sulfate. Carbohydrate utilization of CNCM I-4602 was also investigated, allowing the identification of several carbohydrate utilization gene clusters, and highlighting this strain's inability to utilize lactose, unlike the type strain…

Read More »

September 1, 2018

Sharing of human milk oligosaccharides degradants within bifidobacterial communities in faecal cultures supplemented with Bifidobacterium bifidum.

Gut microbiota of breast-fed infants are generally rich in bifidobacteria. Recent studies show that infant gut-associated bifidobacteria can assimilate human milk oligosaccharides (HMOs) specifically among the gut microbes. Nonetheless, little is known about how bifidobacterial-rich communities are shaped in the gut. Interestingly, HMOs assimilation ability is not related to the dominance of each species. Bifidobacterium longum susbp. longum and Bifidobacterium breve are commonly found as the dominant species in infant stools; however, they show limited HMOs assimilation ability in vitro. In contrast, avid in vitro HMOs consumers, Bifidobacterium bifidum and Bifidobacterium longum subsp. infantis, are less abundant in infant stools.…

Read More »

August 1, 2018

Assessment of the physicochemical properties and bacterial composition of Lactobacillus plantarum and Enterococcus faecium-fermented Astragalus membranaceus using single molecule, real-time sequencing technology.

We investigated if fermentation with probiotic cultures could improve the production of health-promoting biological compounds in Astragalus membranaceus. We tested the probiotics Enterococcus faecium, Lactobacillus plantarum and Enterococcus faecium?+?Lactobacillus plantarum and applied PacBio single molecule, real-time sequencing technology (SMRT) to evaluate the quality of Astragalus fermentation. We found that the production rates of acetic acid, methylacetic acid, aethyl acetic acid and lactic acid using E. faecium?+?L. plantarum were 1866.24?mg/kg on day 15, 203.80?mg/kg on day 30, 996.04?mg/kg on day 15, and 3081.99?mg/kg on day 20, respectively. Other production rates were: polysaccharides, 9.43%, 8.51%, and 7.59% on day 10; saponins, 19.6912?mg/g,…

Read More »

July 19, 2018

Complete genome sequence of Enterococcus durans KLDS6.0933, a potential probiotic strain with high cholesterol removal ability

Enterococci are commensal bacteria in the mammalian gastrointestinal tract which play an important role in the production of various fermented foods. Thus, certain enterococcal strains are commonly used as probiotics to confer health benefits to human and animals. Enterococcus durans KLDS6.0933 is a potential probiotic strain with high cholesterol removal ability, which was isolated from traditional naturally fermented cream in Inner Mongolia of China. To better understand the genetic basis of the probiotic properties of this strain, the whole-genome sequence was performed using the PacBio RSII platform.

Read More »

July 1, 2018

Gene editing and genetic engineering approaches for advanced probiotics: A review.

The applications of probiotics are significant and thus resulted in need of genome analysis of probiotic strains. Various omics methods and systems biology approaches enables us to understand and optimize the metabolic processes. These techniques have increased the researcher's attention towards gut microbiome and provided a new source for the revelation of uncharacterized biosynthetic pathways which enables novel metabolic engineering approaches. In recent years, the broad and quantitative analysis of modified strains relies on systems biology tools such as in silico design which are commonly used methods for improving strain performance. The genetic manipulation of probiotic microorganisms is crucial for…

Read More »

May 1, 2018

Genomic and probiotic characterization of SJP-SNU strain of Pichia kudriavzevii.

The yeast strain SJP-SNU was investigated as a probiotic and was characterized with respect to growth temperature, bile salt resistance, hydrogen sulfide reducing activity, intestinal survival ability and chicken embryo pathogenicity. In addition, we determined the complete genomic and mitochondrial sequences of SJP-SNU and conducted comparative genomics analyses. SJP-SNU grew rapidly at 37 °C and formed colonies on MacConkey agar containing bile salt. SJP-SNU reduced hydrogen sulfide produced by Salmonella serotype Enteritidis and, after being fed to 4-week-old chickens, could be isolated from cecal feces. SJP-SNU did not cause mortality in 10-day-old chicken embryos. From 13 initial contigs, 11 were finally…

Read More »

April 1, 2018

Characterization of Lactobacillus amylolyticus L6 as potential probiotics based on genome sequence and corresponding phenotypes

The potential of newly isolated Lactobacillus amylolyticus L6 as probiotics was investigated based on the whole genome sequence and corresponding phenotypes. With Lactobacillus acidophilus NCFM as positive control, several established methods of evaluating potential probiotics were performed on L. amylolyticus L6. The results indicated that L. amylolyticus L6 retained higher viability in human gastrointestinal (GI) tract and it also had strong inhibitory effect on pathogenic bacteria. Meanwhile, the candidate probiotics exhibited similar adhesion level as that of L. acidophilus NCFM in vitro test. As for carbohydrate utilization profile, L. amylolyticus L6 had high ability of utilizing raffinose and stachyose which…

Read More »

April 1, 2018

Probiotic genomes: Sequencing and annotation in the past decade

Probiotics are live microorganisms that confer many health benefits to the host when administered in adequate quantities. These health benefits have garnered much attention towards Probiotics and have given an impetus to their use as dietary supplements for the improvement of general health and as adjuvant therapies for certain diseases. The increased demand for probiotic products in the recent times has provided the thrust for probiotic research applied to several areas of human biology. The advances in genomic technologies have further facilitated the sequencing of the genomes of such probiotic bacteria and their genomic analyses to identify the genes that…

Read More »

February 14, 2018

Probiotic and anti-inflammatory potential of Lactobacillus rhamnosus 4B15 and Lactobacillus gasseri 4M13 isolated from infant feces.

A total of 22 Lactobacillus strains, which were isolated from infant feces were evaluated for their probiotic potential along with resistance to low pH and bile salts. Eight isolates (L. reuteri 3M02 and 3M03, L. gasseri 4M13, 4R22, 5R01, 5R02, and 5R13, and L. rhamnosus 4B15) with high tolerance to acid and bile salts, and ability to adhere to the intestine were screened from 22 strains. Further, functional properties of 8 Lactobacillus strains, such as anti-oxidation, inhibition of a-glucosidase activity, cholesterol-lowering, and anti-inflammation were evaluated. The properties were strain-specific. Particularly, two strains of L. rhamnosus, 4B15 (4B15) and L. gasseri…

Read More »

February 8, 2018

Complete genome sequence and genomic characterization of Lactobacillus acidophilus LA1 (11869BP).

Our body has natural defense systems to protect against potentially harmful microbes, including the physical and chemical barriers of the intestinal epithelium (Corfield et al., 2000). The physical barrier of the intestinal epithelium protects the host against pathogenic microbes (Anderson et al., 1993), and the intestinal mucosa coated with mucus excretes pathogens from the intestinal tract (Corfield et al., 2000).

Read More »

February 1, 2018

Comparative genomic analysis of Lactobacillus plantarum GB-LP4 and identification of evolutionarily divergent genes in high-osmolarity environment.

Lactobacillus plantarum is one of the widely-used probiotics and there have been a large number of advanced researches on the effectiveness of this species. However, the difference between previously reported plantarum strains, and the source of genomic variation among the strains were not clearly specified. In order to understand further on the molecular basis of L. plantarum on Korean traditional fermentation, we isolated the L. plantarum GB-LP4 from Korean fermented vegetable and conducted whole genome assembly. With comparative genomics approach, we identified the candidate genes that are expected to have undergone evolutionary acceleration. These genes have been reported to associate…

Read More »

1 2 3 6

Subscribe for blog updates:

Archives