X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
June 3, 2019

Application Brochure: Explore metagenomes in high resolution

The ability to identify and understand the functions of the complex microbial populations living in, on, and around us requires comprehensive characterization of each community member. Highly accurate long reads– HiFi reads–with single-molecule resolution make Single Molecule, Real-Time (SMRT) Sequencing ideal for full-length 16S rRNA sequencing, long-read metagenomic profiling, and shotgun metagenomic assembly.

Read More »

January 15, 2018

PAG Conference: Long-read sequencing reveals complex genomic architecture in independent carnivorous plant lineages

In this PAG 2018 presentation, Tanya Renner of Pennsylvania State University shares research using PacBio SMRT Sequencing to understand the genomes and transcriptomes of carnivorous plants. She describes the humped bladderwort, Utricularia gibba, as having an extreme genome due to its small size (100 Mbp) despite containing numerous tandem gene duplications and having undergone two whole genome duplications. Renner shares ongoing research into two Drosera species, commonly known as sundews, which through whole genome sequencing are illuminating carnivorous plant genome structural evolution including the transition from monocentric to holocentric chromosomes.

Read More »

January 15, 2018

Linking secondary metabolites to gene clusters through genome sequencing of six diverse Aspergillus species.

The fungal genus ofAspergillusis highly interesting, containing everything from industrial cell factories, model organisms, and human pathogens. In particular, this group has a prolific production of bioactive secondary metabolites (SMs). In this work, four diverseAspergillusspecies (A. campestris,A. novofumigatus,A. ochraceoroseus, andA. steynii) have been whole-genome PacBio sequenced to provide genetic references in threeAspergillussections.A. taichungensisandA. candidusalso were sequenced for SM elucidation. ThirteenAspergillusgenomes were analyzed with comparative genomics to determine phylogeny and genetic diversity, showing that each presented genome contains 15-27% genes not found in other sequenced Aspergilli. In particular,A. novofumigatuswas compared with the pathogenic speciesA. fumigatusThis suggests thatA. novofumigatuscan produce most of…

Read More »

September 1, 2017

High metabolic versatility of different toxigenic and non-toxigenic Clostridioides difficile isolates.

Clostridioides difficile (formerly Clostridium difficile) is a major nosocomial pathogen with an increasing number of community-acquired infections causing symptoms from mild diarrhea to life-threatening colitis. The pathogenicity of C. difficile is considered to be mainly associated with the production of genome-encoded toxins A and B. In addition, some strains also encode and express the binary toxin CDT. However; a large number of non-toxigenic C. difficile strains have been isolated from the human gut and the environment. In this study, we characterized the growth behavior, motility and fermentation product formation of 17 different C. difficile isolates comprising five different major genomic…

Read More »

June 1, 2017

Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice.

The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice…

Read More »

February 16, 2017

The mitochondrial genome sequences of the round goby and the sand goby reveal patterns of recent evolution in gobiid fish.

Vertebrate mitochondrial genomes are optimized for fast replication and low cost of RNA expression. Accordingly, they are devoid of introns, are transcribed as polycistrons and contain very little intergenic sequences. Usually, vertebrate mitochondrial genomes measure between 16.5 and 17 kilobases (kb).During genome sequencing projects for two novel vertebrate models, the invasive round goby and the sand goby, we found that the sand goby genome is exceptionally small (16.4 kb), while the mitochondrial genome of the round goby is much larger than expected for a vertebrate. It is 19 kb in size and is thus one of the largest fish and even vertebrate…

Read More »

February 2, 2017

Plasmodium malariae and P. ovale genomes provide insights into malaria parasite evolution.

Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are…

Read More »

February 1, 2017

Absence of genome reduction in diverse, facultative endohyphal bacteria.

Fungi interact closely with bacteria, both on the surfaces of the hyphae and within their living tissues (i.e. endohyphal bacteria, EHB). These EHB can be obligate or facultative symbionts and can mediate diverse phenotypic traits in their hosts. Although EHB have been observed in many lineages of fungi, it remains unclear how widespread and general these associations are, and whether there are unifying ecological and genomic features can be found across EHB strains as a whole. We cultured 11 bacterial strains after they emerged from the hyphae of diverse Ascomycota that were isolated as foliar endophytes of cupressaceous trees, and…

Read More »

November 13, 2016

Whole genome analysis of Yersinia ruckeri isolated over 27 years in Australia and New Zealand reveals geographical endemism over multiple lineages and recent evolution under host selection.

Yersinia ruckeri is a salmonid pathogen with widespread distribution in cool-temperate waters including Australia and New Zealand, two isolated environments with recently developed salmonid farming industries. Phylogenetic comparison of 58 isolates from Australia, New Zealand, USA, Chile, Finland and China based on non-recombinant core genome SNPs revealed multiple deep-branching lineages, with a most recent common ancestor estimated at 18?500 years BP (12?355-24?757 95% HPD) and evidence of Australasian endemism. Evolution within the Tasmanian Atlantic salmon serotype O1b lineage has been slow, with 63 SNPs describing the variance over 27 years. Isolates from the prevailing lineage are poorly/non-motile compared to a…

Read More »

September 20, 2016

The effects of signal erosion and core genome reduction on the identification of diagnostic markers.

Whole-genome sequence (WGS) data are commonly used to design diagnostic targets for the identification of bacterial pathogens. To do this effectively, genomics databases must be comprehensive to identify the strict core genome that is specific to the target pathogen. As additional genomes are analyzed, the core genome size is reduced and there is erosion of the target-specific regions due to commonality with related species, potentially resulting in the identification of false positives and/or false negatives.A comparative analysis of 1,130 Burkholderia genomes identified unique markers for many named species, including the human pathogens B. pseudomallei and B. mallei Due to core genome reduction…

Read More »

September 6, 2016

Comparative genomics of Campylobacter iguaniorum to unravel genetic regions associated with reptilian hosts.

Campylobacter iguaniorum is most closely related to the species C fetus, C hyointestinalis, and C lanienae Reptiles, chelonians and lizards in particular, appear to be a primary reservoir of this Campylobacter species. Here we report the genome comparison of C iguaniorum strain 1485E, isolated from a bearded dragon (Pogona vitticeps), and strain 2463D, isolated from a green iguana (Iguana iguana), with the genomes of closely related taxa, in particular with reptile-associated C fetus subsp. testudinum In contrast to C fetus, C iguaniorum is lacking an S-layer encoding region. Furthermore, a defined lipooligosaccharide biosynthesis locus, encoding multiple glycosyltransferases and bounded by…

Read More »

August 21, 2016

Complete genome of the starch-degrading myxobacteria Sandaracinus amylolyticus DSM 53668T.

Myxobacteria are members of d-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668(T) that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin,…

Read More »

July 9, 2016

Rapid sequencing of complete env genes from primary HIV-1 samples

The ability to study rapidly evolving viral populations has been constrained by the read length of next-generation sequencing approaches and the sampling depth of single-genome amplification methods. Here, we develop and characterize a method using Pacific Biosciences Single Molecule, Real-Time (SMRT) sequencing technology to sequence multiple, intact full-length human immunodeficiency virus-1 env genes amplified from viral RNA populations circulating in blood, and provide computational tools for analyzing and visualizing these data.

Read More »

June 2, 2016

Species- and strain-specific adaptation of the HSP70 super family in pathogenic trypanosomatids.

All eukaryotic genomes encode multiple members of the heat shock protein 70 (HSP70) family, which evolved distinctive structural and functional features in response to specific environmental constraints. Phylogenetic analysis of this protein family thus can inform on genetic and molecular mechanisms that drive species-specific environmental adaptation. Here we use the eukaryotic pathogen Leishmania spp. as a model system to investigate the evolution of the HSP70 protein family in an early-branching eukaryote that is prone to gene amplification and adapts to cytotoxic host environments by stress-induced and chaperone-dependent stage differentiation. Combining phylogenetic and comparative analyses of trypanosomatid genomes, draft genome of…

Read More »

April 8, 2016

The Mycobacterium phlei genome: expectations and surprises.

Mycobacterium phlei, a nontuberculosis mycobacterial species, was first described in 1898–1899. We present the complete genome sequence for the M. phlei CCUG21000T type strain and the draft genomes for four additional strains. The genome size for all fiveis 5.3 Mb with 69.4% Guanine-Cytosine content. This is ˜0.35 Mbp smaller than the previously reported M. phlei RIVM draft genome. The size difference is attributed partly to large bacteriophage sequence fragments in the M. phlei RIVM genome. Comparative analysis revealed the following: 1) A CRISPR system similar to Type 1E (cas3) in M. phlei RIVM; 2) genes involved in polyamine metabolism and…

Read More »

1 2 3

Subscribe for blog updates:

Archives