Menu
July 19, 2019  |  

SMRT Sequencing for parallel analysis of multiple targets and accurate SNP phasing.

Single-molecule real-time (SMRT) sequencing generates much longer reads than other widely used next-generation (next-gen) sequencing methods, but its application to whole genome/exome analysis has been limited. Here, we describe the use of SMRT sequencing coupled with barcoding to simultaneously analyze one or a small number of genomic targets derived from multiple sources. In the budding yeast system, SMRT sequencing was used to analyze strand-exchange intermediates generated during mitotic recombination and to analyze genetic changes in a forward mutation assay. The general barcoding-SMRT approach was then extended to diffuse large B-cell lymphoma primary tumors and cell lines, where detected changes agreed with prior Illumina exome sequencing. A distinct advantage afforded by SMRT sequencing over other next-gen methods is that it immediately provides the linkage relationships between SNPs in the target segment sequenced. The strength of our approach for mutation/recombination studies (as well as linkage identification) derives from its inherent computational simplicity coupled with a lack of reliance on sophisticated statistical analyses. Copyright © 2015 Guo et al.


July 19, 2019  |  

Fc? receptors: genetic variation, function, and disease.

Fc? receptors (Fc?Rs) are key immune receptors responsible for the effective control of both humoral and innate immunity and are central to maintaining the balance between generating appropriate responses to infection and preventing autoimmunity. When this balance is lost, pathology results in increased susceptibility to cancer, autoimmunity, and infection. In contrast, optimal Fc?R engagement facilitates effective disease resolution and response to monoclonal antibody immunotherapy. The underlying genetics of the Fc?R gene family are a central component of this careful balance. Complex in humans and generated through ancestral duplication events, here we review the evolution of the gene family in mammals, the potential importance of copy number, and functionally relevant single nucleotide polymorphisms, as well as discussing current approaches and limitations when exploring genetic variation in this region. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


July 19, 2019  |  

Long-read Single-Molecule Real-Time (SMRT) full gene sequencing of cytochrome P450-2D6 (CYP2D6).

The CYP2D6 enzyme metabolizes ~25% of common medications, yet homologous pseudogenes and copy-number variants (CNVs) make interrogating the polymorphic CYP2D6 gene with short-read sequencing challenging. Therefore, we developed a novel long-read, full gene CYP2D6 single-molecule real-time (SMRT) sequencing method using the Pacific Biosciences platform. Long-range PCR and CYP2D6 SMRT sequencing of 10 previously genotyped controls identified expected star (*) alleles, but also enabled suballele resolution, diplotype refinement, and discovery of novel alleles. Coupled with an optimized variant calling pipeline, CYP2D6 SMRT sequencing was highly reproducible as triplicate intra- and inter-run non-reference genotype results were completely concordant. Importantly, targeted SMRT sequencing of upstream and downstream CYP2D6 gene copies characterized the duplicated allele in 15 control samples with CYP2D6 CNVs. The utility of CYP2D6 SMRT sequencing was further underscored by identifying the diplotypes of 14 samples with discordant or unclear CYP2D6 configurations from previous targeted genotyping, which again included suballele resolution, duplicated allele characterization, and discovery of a novel allele and tandem arrangement (CYP2D6*36+*41). Taken together, long-read CYP2D6 SMRT sequencing is an innovative, reproducible, and validated method for full-gene characterization, duplication allele-specific analysis and novel allele discovery, which will likely improve CYP2D6 metabolizer phenotype prediction for both research and clinical testing applications. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


July 19, 2019  |  

DNA methylation assessed by SMRT Sequencing is linked to mutations in Neisseria meningitidis isolates.

The Gram-negative bacterium Neisseria meningitidis features extensive genetic variability. To present, proposed virulence genotypes are also detected in isolates from asymptomatic carriers, indicating more complex mechanisms underlying variable colonization modes of N. meningitidis. We applied the Single Molecule, Real-Time (SMRT) sequencing method from Pacific Biosciences to assess the genome-wide DNA modification profiles of two genetically related N. meningitidis strains, both of serogroup A. The resulting DNA methylomes revealed clear divergences, represented by the detection of shared and of strain-specific DNA methylation target motifs. The positional distribution of these methylated target sites within the genomic sequences displayed clear biases, which suggest a functional role of DNA methylation related to the regulation of genes. DNA methylation in N. meningitidis has a likely underestimated potential for variability, as evidenced by a careful analysis of the ORF status of a panel of confirmed and predicted DNA methyltransferase genes in an extended collection of N. meningitidis strains of serogroup A. Based on high coverage short sequence reads, we find phase variability as a major contributor to the variability in DNA methylation. Taking into account the phase variable loci, the inferred functional status of DNA methyltransferase genes matched the observed methylation profiles. Towards an elucidation of presently incompletely characterized functional consequences of DNA methylation in N. meningitidis, we reveal a prominent colocalization of methylated bases with Single Nucleotide Polymorphisms (SNPs) detected within our genomic sequence collection. As a novel observation we report increased mutability also at 6mA methylated nucleotides, complementing mutational hotspots previously described at 5mC methylated nucleotides. These findings suggest a more diverse role of DNA methylation and Restriction-Modification (RM) systems in the evolution of prokaryotic genomes.


July 19, 2019  |  

Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168.

Phase-variable restriction-modification systems are a feature of a diverse range of bacterial species. Stochastic, reversible switches in expression of the methyltransferase produces variation in methylation of specific sequences. Phase-variable methylation by both Type I and Type III methyltransferases is associated with altered gene expression and phenotypic variation. One phase-variable gene of Campylobacter jejuni encodes a homologue of an unusual Type IIG restriction-modification system in which the endonuclease and methyltransferase are encoded by a single gene. Using both inhibition of restriction and PacBio-derived methylome analyses of mutants and phase-variants, the cj0031c allele in C. jejuni strain NCTC11168 was demonstrated to specifically methylate adenine in 5’CCCGA and 5’CCTGA sequences. Alterations in the levels of specific transcripts were detected using RNA-Seq in phase-variants and mutants of cj0031c but these changes did not correlate with observed differences in phenotypic behaviour. Alterations in restriction of phage growth were also associated with phase variation (PV) of cj0031c and correlated with presence of sites in the genomes of these phages. We conclude that PV of a Type IIG restriction-modification system causes changes in site-specific methylation patterns and gene expression patterns that may indirectly change adaptive traits.© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 19, 2019  |  

Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli.

Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E. coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5′ UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.


July 19, 2019  |  

Mitotic intragenic recombination: A mechanism of survival for several congenital disorders of glycosylation.

Congenital disorders of glycosylation (CDGs) are disorders of abnormal protein glycosylation that affect multiple organ systems. Because most CDGs have been described in only a few individuals, our understanding of the associated phenotypes and the mechanisms of individual survival are limited. In the process of studying two siblings, aged 6 and 11 years, with MOGS-CDG and biallelic MOGS (mannosyl-oligosaccharide glucosidase) mutations (GenBank: NM_006302.2; c.[65C>A; 329G>A] p.[Ala22Glu; Arg110His]; c.[370C>T] p.[Gln124(*)]), we noted that their survival was much longer than the previous report of MOGS-CDG, in a child who died at 74 days of age. Upon mutation analysis, we detected multiple MOGS genotypes including wild-type alleles in their cultured fibroblast and peripheral blood DNA. Further analysis of DNA from cultured fibroblasts of six individuals with compound heterozygous mutations of PMM2 (PMM2-CDG), MPI (MPI-CDG), ALG3 (ALG3-CDG), ALG12 (ALG12-CDG), DPAGT1 (DPAGT1-CDG), and ALG1 (ALG1-CDG) also identified multiple genotypes including wild-type alleles for each. Droplet digital PCR showed a ratio of nearly 1:1 wild-type to mutant alleles for most, but not all, mutations. This suggests that mitotic recombination contributes to the survival and the variable expressivity of individuals with compound heterozygous CDGs. This also provides an explanation for prior observations of a reduced frequency of homozygous mutations and might contribute to increased levels of residual enzyme activity in cultured fibroblasts of individuals with MPI- and PMM2-CDGs. Copyright © 2016 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.


July 19, 2019  |  

Comparative analyses of low, medium and high-resolution HLA typing technologies for human populations

Human Leukocyte Antigen (HLA) encoding genes are part of the major histocompatibility complex (MHC) on human chromosome 6. This region is one of the most polymorphic regions in the human genome. Prior knowledge of HLA allelic polymorphisms is clinically important for matching donor and recipient during organ/tissue transplantation. HLA allelic information is also useful in predicting immune responses to various infectious diseases, genetic disorders and autoimmune conditions. India harbors over a billion people and its population is untapped for HLA allelic diversity. In this study, we explored and compared three HLA typing methods for South Indian population, using Sequence-Specific Primers (SSP), NGS (Roche/454) and single- molecule sequencing (PacBio RS II) platforms. Over 1020 DNA samples were typed at low resolution using SSP method to determine the major HLA alleles within the South Indian population. These studies were followed up with medium resolution HLA typing of 80 samples based on exonic sequences on the Roche/454 sequencing system and high-resolution (6-8 digit) typing of 8 samples for HLA alleles of class I genes (HLA-A, B and C) and class II genes (HLA-DRB1 and DQB1) using PacBio RS II platform. The long reads delivered by SMRT technology, covered the full-length class I and class II genes/alleles in contiguous reads including untranslated regions, exons and introns, which provided phased SNP information. We have identified three novel alleles from PacBio data that were verified by Roche 454 sequencing. This is the first case study of HLA typing using second and third generation NGS technologies for an Indian population. The PacBio platform is a promising platform for large-scale HLA typing for establishing an HLA database for the untapped ethnic populations of India.


July 19, 2019  |  

Single-molecule sequencing reveals complex genomic variation of hepatitis B virus during 15 years of chronic infection following liver transplantation.

Chronic hepatitis B (CHB) is prevalent worldwide. The infectious agent, hepatitis B virus (HBV) replicates via an RNA intermediate and is error-prone, leading to rapid generation of closely related but not identical viral variants, including those that can escape host immune responses and antiviral treatments. The complexity of CHB can be further enhanced by the presence of HBV variants with large deletions in the genome, generated via splicing (spHBV). Although spHBV variants are incapable of autonomous replication, their replication is rescued by wild-type HBV. SpHBV variants have been shown to enhance wild-type virus replication, and their prevalence increases with liver disease progression. Single-molecule deep sequencing was performed on whole HBV genomes extracted from longitudinal samples of a post-liver transplant CHB subject, collected over a 15-year period that included the liver explant. By employing novel bioinformatics methods, this analysis showed a complex dynamics of the viral population across a period of changing treatment regimens. The spHBV detected in the liver explant remained present post-transplantation, along with emergence of a highly diverse novel spHBV population as well as variants with multiple deletions in the preS genes. The identification of novel mutations outside the HBV reverse transcriptase gene that co-occur with known drug resistant mutations, highlight the relevance of using full genome deep sequencing and support the hypothesis that drug resistance involves interactions across the full-length HBV genome.Single-molecule sequencing allowed characterising, in unprecedented detail, the evolution of HBV populations and offered unique insights into the dynamics of defective and spHBV variants following liver transplantation and complex treatment regimes. This analysis also showed rapid adaptation of HBV populations to treatment regimens with evolving drug resistance phenotypes and evidence of purifying selection across the whole genome. Finally, the new open source bioinformatics tools are freely available, with the capacity to easily identify potential spliced variants from deep sequencing data. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Towards precision medicine.

There is great potential for genome sequencing to enhance patient care through improved diagnostic sensitivity and more precise therapeutic targeting. To maximize this potential, genomics strategies that have been developed for genetic discovery – including DNA-sequencing technologies and analysis algorithms – need to be adapted to fit clinical needs. This will require the optimization of alignment algorithms, attention to quality-coverage metrics, tailored solutions for paralogous or low-complexity areas of the genome, and the adoption of consensus standards for variant calling and interpretation. Global sharing of this more accurate genotypic and phenotypic data will accelerate the determination of causality for novel genes or variants. Thus, a deeper understanding of disease will be realized that will allow its targeting with much greater therapeutic precision.


July 19, 2019  |  

Variation and evolution in the glutamine-rich repeat region of Drosophila argonaute-2.

RNA interference pathways mediate biological processes through Argonaute-family proteins, which bind small RNAs as guides to silence complementary target nucleic acids . In insects and crustaceans Argonaute-2 silences viral nucleic acids, and therefore acts as a primary effector of innate antiviral immunity. Although the function of the major Argonaute-2 domains, which are conserved across most Argonaute-family proteins, are known, many invertebrate Argonaute-2 homologs contain a glutamine-rich repeat (GRR) region of unknown function at the N-terminus . Here we combine long-read amplicon sequencing of Drosophila Genetic Reference Panel (DGRP) lines with publicly available sequence data from many insect species to show that this region evolves extremely rapidly and is hyper-variable within species. We identify distinct GRR haplotype groups in Drosophila melanogaster, and suggest that one of these haplotype groups has recently risen to high frequency in a North American population. Finally, we use published data from genome-wide association studies of viral resistance in D. melanogaster to test whether GRR haplotypes are associated with survival after virus challenge. We find a marginally significant association with survival after challenge with Drosophila C Virus in the DGRP, but we were unable to replicate this finding using lines from the Drosophila Synthetic Population Resource panel. Copyright © 2016 Palmer and Obbard.


July 19, 2019  |  

High throughput random mutagenesis and Single Molecule Real Time Sequencing of the muscle nicotinic acetylcholine receptor.

High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the a1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each a1 mutant was co-transfected with wildtype ß1, d, and e subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either a-bungarotoxin or tubocurarine. Eight a1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation.


July 19, 2019  |  

De novo assembly and phasing of a Korean human genome.

Advances in genome assembly and phasing provide an opportunity to investigate the diploid architecture of the human genome and reveal the full range of structural variation across population groups. Here we report the de novo assembly and haplotype phasing of the Korean individual AK1 (ref. 1) using single-molecule real-time sequencing, next-generation mapping, microfluidics-based linked reads, and bacterial artificial chromosome (BAC) sequencing approaches. Single-molecule sequencing coupled with next-generation mapping generated a highly contiguous assembly, with a contig N50 size of 17.9?Mb and a scaffold N50 size of 44.8?Mb, resolving 8 chromosomal arms into single scaffolds. The de novo assembly, along with local assemblies and spanning long reads, closes 105 and extends into 72 out of 190 euchromatic gaps in the reference genome, adding 1.03?Mb of previously intractable sequence. High concordance between the assembly and paired-end sequences from 62,758 BAC clones provides strong support for the robustness of the assembly. We identify 18,210 structural variants by direct comparison of the assembly with the human reference, identifying thousands of breakpoints that, to our knowledge, have not been reported before. Many of the insertions are reflected in the transcriptome and are shared across the Asian population. We performed haplotype phasing of the assembly with short reads, long reads and linked reads from whole-genome sequencing and with short reads from 31,719 BAC clones, thereby achieving phased blocks with an N50 size of 11.6?Mb. Haplotigs assembled from single-molecule real-time reads assigned to haplotypes on phased blocks covered 89% of genes. The haplotigs accurately characterized the hypervariable major histocompatability complex region as well as demonstrating allele configuration in clinically relevant genes such as CYP2D6. This work presents the most contiguous diploid human genome assembly so far, with extensive investigation of unreported and Asian-specific structural variants, and high-quality haplotyping of clinically relevant alleles for precision medicine.


July 19, 2019  |  

Tofacitinib relieves symptoms of stimulator of interferon genes (STING)-associated vasculopathy with onset in infancy caused by 2 de novo variants in TMEM173.

To the Editor: Stimulator of interferon genes (STING), which is encoded by transmembrane protein 173 (TMEM173), is an important mediator in initiating innate immune responses by detecting aberrant DNA species or cyclic di-GMP-AMP (cGAMP) in the cytosol and driving synthesis of type I interferon.1-3cGAMP molecules, which are produced by cyclic GMP-AMP synthase, bind to STING homodimers embedded in the endoplasmic reticulum membrane and eventually cause phosphorylation of interferon regulatory factor 3 by activating Tank-binding kinase 1 (TBK1). Patients with activating mutations of STING display early onset of chronic inflammation and vasculopathy caused by increased type I interferon signaling, a condition termed STING-associated vasculopathy with onset in infancy (SAVI).2,3Improved understanding of STING’s function and its implications in disease pathogenesis has suggested new potential avenues of disease treatment options through modulating STING signaling pathway components.


July 19, 2019  |  

Revealing complete complex KIR haplotypes phased by long-read sequencing technology

The killer cell immunoglobulin-like receptor (KIR) region of human chromosome 19 contains up to 16 genes for natural killer (NK) cell receptors that recognize human leukocyte antigen (HLA)/peptide complexes and other ligands. The KIR proteins fulfill functional roles in infections, pregnancy, autoimmune diseases and transplantation. However, their characterization remains a constant challenge. Not only are the genes highly homologous due to their recent evolution by tandem duplications, but the region is structurally dynamic due to frequent transposon-mediated recombination. A sequencing approach that precisely captures the complexity of KIR haplotypes for functional annotation is desirable. We present a unique approach to haplotype the KIR loci using single-molecule, real-time (SMRT) sequencing. Using this method, we have—for the first time—comprehensively sequenced and phased sixteen KIR haplotypes from eight individuals without imputation. The information revealed four novel haplotype structures, a novel gene-fusion allele, novel and confirmed insertion/deletion events, a homozygous individual, and overall diversity for the structural haplotypes and their alleles. These KIR haplotypes augment our existing knowledge by providing high-quality references, evolutionary informers, and source material for imputation. The haplotype sequences and gene annotations provide alternative loci for the KIR region in the human genome reference GrCh38.p8.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.