X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
August 1, 2018

Phasevarions of bacterial pathogens: Methylomics sheds new light on old enemies.

A wide variety of bacterial pathogens express phase-variable DNA methyltransferases that control expression of multiple genes via epigenetic mechanisms. These randomly switching regulons - phasevarions - regulate genes involved in pathogenesis, host adaptation, and antibiotic resistance. Individual phase-variable genes can be identified in silico as they contain easily recognized features such as simple sequence repeats (SSRs) or inverted repeats (IRs) that mediate the random switching of expression. Conversely, phasevarion-controlled genes do not contain any easily identifiable features. The study of DNA methyltransferase specificity using Single-Molecule, Real-Time (SMRT) sequencing and methylome analysis has rapidly advanced the analysis of phasevarions by allowing…

Read More »

April 1, 2018

A survey of Type III restriction-modification systems reveals numerous, novel epigenetic regulators controlling phase-variable regulons; phasevarions.

Many bacteria utilize simple DNA sequence repeats as a mechanism to randomly switch genes on and off. This process is called phase variation. Several phase-variable N6-adenine DNA-methyltransferases from Type III restriction-modification systems have been reported in bacterial pathogens. Random switching of DNA methyltransferases changes the global DNA methylation pattern, leading to changes in gene expression. These epigenetic regulatory systems are called phasevarions - phase-variable regulons. The extent of these phase-variable genes in the bacterial kingdom is unknown. Here, we interrogated a database of restriction-modification systems, REBASE, by searching for all simple DNA sequence repeats in mod genes that encode Type III N6-adenine…

Read More »

July 17, 2017

Phase-variable methylation and epigenetic regulation by type I restriction-modification systems.

Epigenetic modifications in bacteria, such as DNA methylation, have been shown to affect gene regulation, thereby generating cells that are isogenic but with distinctly different phenotypes. Restriction-modification (RM) systems contain prototypic methylases that are responsible for much of bacterial DNA methylation. This review focuses on a distinctive group of type I RM loci that , through phase variation, can modify their methylation target specificity and can thereby switch bacteria between alternative patterns of DNA methylation. Phase variation occurs at the level of the target recognition domains of the hsdS (specificity) gene via reversible recombination processes acting upon multiple hsdS alleles.…

Read More »

September 1, 2016

Bacterial genetics: SMRT-seq reveals an epigenetic switch.

Streptococcus pneumoniae uses genetic diversification as a strategy to achieve phenotypic plasticity. For example, DNA inversion of the hsdS genes of type I restriction-modification (R-M) systems determines whether S. pneumoniae forms opaque or transparent colonies, which have different colonization and virulence characteristics. Zhang and colleagues now use single-molecule, real-time sequencing (SMRT-seq) to show the allelic variation of hsdS that results from site-specific recombination forms part of an epigenetic switch.

Read More »

June 1, 2016

Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168.

Phase-variable restriction-modification systems are a feature of a diverse range of bacterial species. Stochastic, reversible switches in expression of the methyltransferase produces variation in methylation of specific sequences. Phase-variable methylation by both Type I and Type III methyltransferases is associated with altered gene expression and phenotypic variation. One phase-variable gene of Campylobacter jejuni encodes a homologue of an unusual Type IIG restriction-modification system in which the endonuclease and methyltransferase are encoded by a single gene. Using both inhibition of restriction and PacBio-derived methylome analyses of mutants and phase-variants, the cj0031c allele in C. jejuni strain NCTC11168 was demonstrated to specifically…

Read More »

May 12, 2016

Epigenetics Application Brochure: Characterize the epigenetic landscape of your genome

Single Molecule, Real-Time (SMRT) Sequencing directly detects DNA modifications by measuring variation in the polymerase kinetics of DNA base incorporation during sequencing. With high throughput, long reads, and the sensitivity to detect epigenetic modification without amplification or chemical conversions, the PacBio Systems offer scalable solutions for assessing DNA modifications in bacterial and eukaryotic genomes.

Read More »

April 12, 2016

Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli.

Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E.…

Read More »

July 28, 2015

A biphasic epigenetic switch controls immunoevasion, virulence and niche adaptation in non-typeable Haemophilus influenzae.

Non-typeable Haemophilus influenzae contains an N(6)-adenine DNA-methyltransferase (ModA) that is subject to phase-variable expression (random ON/OFF switching). Five modA alleles, modA2, modA4, modA5, modA9 and modA10, account for over two-thirds of clinical otitis media isolates surveyed. Here, we use single molecule, real-time (SMRT) methylome analysis to identify the DNA-recognition motifs for all five of these modA alleles. Phase variation of these alleles regulates multiple proteins including vaccine candidates, and key virulence phenotypes such as antibiotic resistance (modA2, modA5, modA10), biofilm formation (modA2) and immunoevasion (modA4). Analyses of a modA2 strain in the chinchilla model of otitis media show a clear…

Read More »

June 15, 2015

Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes.

Beyond its role in host defense, bacterial DNA methylation also plays important roles in the regulation of gene expression, virulence and antibiotic resistance. Bacterial cells in a clonal population can generate epigenetic heterogeneity to increase population-level phenotypic plasticity. Single molecule, real-time (SMRT) sequencing enables the detection of N6-methyladenine and N4-methylcytosine, two major types of DNA modifications comprising the bacterial methylome. However, existing SMRT sequencing-based methods for studying bacterial methylomes rely on a population-level consensus that lacks the single-cell resolution required to observe epigenetic heterogeneity. Here, we present SMALR (single-molecule modification analysis of long reads), a novel framework for single molecule-level…

Read More »

April 6, 2015

Specificity of the ModA11, ModA12 and ModD1 epigenetic regulator N6-adenine DNA methyltransferases of Neisseria meningitidis.

Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N(6)-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N(6)-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5'-CGY M6A: G-3'), ModA12 (exemplified…

Read More »

September 30, 2014

A random six-phase switch regulates pneumococcal virulence via global epigenetic changes.

Streptococcus pneumoniae (the pneumococcus) is the world's foremost bacterial pathogen in both morbidity and mortality. Switching between phenotypic forms (or 'phases') that favour asymptomatic carriage or invasive disease was first reported in 1933. Here, we show that the underlying mechanism for such phase variation consists of genetic rearrangements in a Type I restriction-modification system (SpnD39III). The rearrangements generate six alternative specificities with distinct methylation patterns, as defined by single-molecule, real-time (SMRT) methylomics. The SpnD39III variants have distinct gene expression profiles. We demonstrate distinct virulence in experimental infection and in vivo selection for switching between SpnD39III variants. SpnD39III is ubiquitous in…

Read More »

May 18, 2013

ASM PacBio Workshop: Phasevarion – switching expression of multiple genes by methyltransferases in host-adapted pathogens

Epigenetics expert Michael Jennings from Griffith University first posited the phasevarion, or the phase variable regulon mechanism in host-adapted pathogens. This mechanism switches expression of multiple genes in a coordinated fashion and has significant implications on pathogen virulence. In his talk, Jennings describes the phasevarion and his use of whole methylome data to rapidly identify methylation targets.

Read More »

Subscribe for blog updates:

Archives