July 19, 2019  |  

Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence.

Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.

July 7, 2019  |  

First genome sequences of Achromobacter phages reveal new members of the N4 family.

Multi-resistant Achromobacter xylosoxidans has been recognized as an emerging pathogen causing nosocomially acquired infections during the last years. Phages as natural opponents could be an alternative to fight such infections. Bacteriophages against this opportunistic pathogen were isolated in a recent study. This study shows a molecular analysis of two podoviruses and reveals first insights into the genomic structure of Achromobacter phages so far.Growth curve experiments and adsorption kinetics were performed for both phages. Adsorption and propagation in cells were visualized by electron microscopy. Both phage genomes were sequenced with the PacBio RS II system based on single molecule, real-time (SMRT) technology and annotated with several bioinformatic tools. To further elucidate the evolutionary relationships between the phage genomes, a phylogenomic analysis was conducted using the genome Blast Distance Phylogeny approach (GBDP).In this study, we present the first detailed analysis of genome sequences of two Achromobacter phages so far. Phages JWAlpha and JWDelta were isolated from two different waste water treatment plants in Germany. Both phages belong to the Podoviridae and contain linear, double-stranded DNA with a length of 72329 bp and 73659 bp, respectively. 92 and 89 putative open reading frames were identified for JWAlpha and JWDelta, respectively, by bioinformatic analysis with several tools. The genomes have nearly the same organization and could be divided into different clusters for transcription, replication, host interaction, head and tail structure and lysis. Detailed annotation via protein comparisons with BLASTP revealed strong similarities to N4-like phages.Analysis of the genomes of Achromobacter phages JWAlpha and JWDelta and comparisons of different gene clusters with other phages revealed that they might be strongly related to other N4-like phages, especially of the Escherichia group. Although all these phages show a highly conserved genomic structure and partially strong similarities at the amino acid level, some differences could be identified. Those differences, e.g. the existence of specific genes for replication or host interaction in some N4-like phages, seem to be interesting targets for further examination of function and specific mechanisms, which might enlighten the mechanism of phage establishment in the host cell after infection.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.