July 7, 2019  |  

Complete genome sequence of Bordetella pertussis D420.

Bordetella pertussis is the causative agent of whooping cough, a highly contagious, acute respiratory illness that has seen resurgence despite the use of vaccines. We present the complete genome sequence of a clinical strain of B. pertussis, D420, which is representative of a currently circulating clade of this pathogen. Copyright © 2015 Boinett et al.


July 7, 2019  |  

Complete genome sequences of 11 Bordetella pertussis strains representing the pandemic ptxP3 lineage.

Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin. Copyright © 2015 Bart et al.


July 7, 2019  |  

Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages.

Bordetella pertussis is the causative agent of pertussis, a disease which has resurged despite vaccination. We report the complete, annotated genomes of isolates B1917 and B1920, representing two lineages predominating globally in the last 50 years. The B1917 lineage has been associated with the resurgence of pertussis in the 1990s. Copyright © 2014 Bart et al.


July 7, 2019  |  

Highlights of the 11th International Bordetella Symposium: from basic biology to vaccine development.

Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other strategies to prevent these diseases. Highlights of the meeting included pertussis epidemiology in developing nations, genomic analysis of Bordetella biology and evolution, regulation of virulence factor expression, new model systems to study Bordetella biology and disease, effects of different vaccines on immune responses, maternal immunization as a strategy to prevent newborn disease, and novel vaccine development for pertussis. In addition, the group approved the formation of an International Bordetella Society to promote research and information exchange on bordetellae and to organize future meetings. A new Bordetella.org website will also be developed to facilitate these goals. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.