X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
November 4, 2016

Highlights of the 11th International Bordetella Symposium: from basic biology to vaccine development.

Pertussis is a severe respiratory disease caused by infection with the bacterial pathogen Bordetella pertussis The disease affects individuals of all ages but is particularly severe and sometimes fatal in unvaccinated young infants. Other Bordetella species cause diseases in humans, animals, and birds. Scientific, clinical, public health, vaccine company, and regulatory agency experts on these pathogens and diseases gathered in Buenos Aires, Argentina from 5 to 8 April 2016 for the 11th International Bordetella Symposium to discuss recent advances in our understanding of the biology of these organisms, the diseases they cause, and the development of new vaccines and other…

Read More »

November 25, 2015

Complete genome sequences of 11 Bordetella pertussis strains representing the pandemic ptxP3 lineage.

Pathogen adaptation has contributed to the resurgence of pertussis. To facilitate our understanding of this adaptation we report here 11 completely closed and annotated Bordetella pertussis genomes representing the pandemic ptxP3 lineage. Our analyses included six strains which do not produce the vaccine components pertactin and/or filamentous hemagglutinin. Copyright © 2015 Bart et al.

Read More »

June 1, 2015

Complete genome sequence of Bordetella pertussis D420.

Bordetella pertussis is the causative agent of whooping cough, a highly contagious, acute respiratory illness that has seen resurgence despite the use of vaccines. We present the complete genome sequence of a clinical strain of B. pertussis, D420, which is representative of a currently circulating clade of this pathogen. Copyright © 2015 Boinett et al.

Read More »

December 24, 2014

Complete genome sequences of Bordetella pertussis isolates B1917 and B1920, representing two predominant global lineages.

Bordetella pertussis is the causative agent of pertussis, a disease which has resurged despite vaccination. We report the complete, annotated genomes of isolates B1917 and B1920, representing two lineages predominating globally in the last 50 years. The B1917 lineage has been associated with the resurgence of pertussis in the 1990s. Copyright © 2014 Bart et al.

Read More »

February 17, 2013

AGBT Conference: Automated de novo genome assemblies and bacterial epigenomes using PacBio sequencing

In this AGBT plenary talk, Jonas Korlach presented a number of collaborative studies between PacBio and other institutions to make use of highly accurate, long-read sequence data, which has led to a revival of finished genomes. Examples from the infectious disease or pathogen realm included Pertussis, Salmonella, and Listeria, all of which now have closed genomes from PacBio-generated data. Korlach also reported on epigenomic information in Salmonella and Listeria, indicating potential new forms of DNA modifications.

Read More »

February 17, 2013

AGBT Conference: Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens

Jonas Korlach, CSO of PacBio, discusses the revival of finished genomes the microbial community will see with long read data, emphasizing that for certain organisms such as rapidly evolving microbes, having a de novo finished genome will be more useful than creating a draft based on a previous related reference genome. Korlach describes two bioinformatic methods from PacBio, a hierarchical genome assembly process (HGAP) and an consensus caller (Quiver), which are used to generate finished genomes from just long-read PacBio data, with final genome sequence accuracies over 99.999%. Korlach demonstrates the ability of PacBio data to generate closed, high-quality de…

Read More »

Subscribe for blog updates:

Archives