X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, November 7, 2019

ASHG PacBio Workshop: Expansion sequence variations underlie distinct disease phenotypes in SCA10

In this ASHG 2017 presentation, Karen McFarland of the University of Florida presented research on spinocerebellar ataxia type 10 (SCA10), a progressive neurodegenerative disease caused by repeat expansions. She outlined efforts to sequence these repeat expansions including using CRISPR-Cas9 system coupled with SMRT Sequencing. McFarland shared findings from a study of a Parkinson’s disease patient and family that showed variations in expansion sequence can underlie distinct disease phenotypes.

Read More »

Monday, October 21, 2019

Mitochondrial DNA sequencing using PacBio SMRT technology

Mitochondrial DNA (mtDNA) is a compact, double-stranded circular genome of 16,569 bp with a cytosine-rich light (L) chain and a guanine-rich heavy (H) chain. mtDNA mutations have been increasingly recognized as important contributors to an array of human diseases such as Parkinson’s disease, Alzheimer’s disease, colorectal cancer and Kearns–Sayre syndrome. mtDNA mutations can affect all of the 1000-10,000 copies of the mitochondrial genome present in a cell (homoplasmic mutation) or only a subset of copies (heteroplasmic mutation). The ratio of normal to mutant mtDNAs within cells is a significant factor in whether mutations will result in disease, as well as…

Read More »

Sunday, September 22, 2019

Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders.

Regulating fluctuating endogenous nitric oxide (NO) levels is necessary for proper physiological functions. Aberrant NO pathways are implicated in a number of neurological disorders, including Alzheimer’s disease (AD) and Parkinson’s disease. The mechanism of NO in oxidative and nitrosative stress with pathological consequences involves reactions with reactive oxygen species (e.g., superoxide) to form the highly reactive peroxynitrite, hydrogen peroxide, hypochloride ions and hydroxyl radical. NO levels are typically regulated by endogenous nitric oxide synthases (NOS), and inflammatory iNOS is implicated in the pathogenesis of neurodegenerative diseases, in which elevated NO mediates axonal degeneration and activates cyclooxygenases to provoke neuroinflammation. NO…

Read More »

Friday, July 19, 2019

Parkinson’s disease associated with pure ATXN10 repeat

Large, non-coding pentanucleotide repeat expansions of ATTCT in intron 9 of the ATXN10 gene typically cause progressive spinocerebellar ataxia with or without seizures and present neuropathologically with Purkinje cell loss resulting in symmetrical cerebellar atrophy. These ATXN10 repeat expansions can be interrupted by sequence motifs which have been attributed to seizures and are likely to act as genetic modifiers. We identified a Mexican kindred with multiple affected family members with ATXN10 expansions. Four affected family members showed clinical features of spinocerebellar ataxia type 10 (SCA10). However, one affected individual presented with early-onset levodopa-responsive parkinsonism, and one family member carried a…

Read More »

Sunday, July 7, 2019

Identification of low allele frequency mosaic mutations in Alzheimer disease

Germline mutations ofAPP,PSEN1, andPSEN2 genes cause autosomal dominant Alzheimer disease (AD). Somatic variants of the same genes may underlie pathogenesis in sporadic AD, which is the most prevalent form of the disease. Importantly, such somatic variants may be present at very low allelic frequency, confined to the brain, and are thus very difficult or impossible to detect in blood-derived DNA. Ever-refined methodologies to identify mutations present in a fraction of the DNA of the original tissue are rapidly transforming our understanding of DNA mutation and their role in complex pathologies such as tumors. These methods stand poised to test to…

Read More »

Subscribe for blog updates:

Archives