Menu
July 19, 2019  |  

An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion.

Plasmodium cynomolgi, a non-human primate malaria parasite species, has been an important model parasite since its discovery in 1907. Similarities in the biology of P. cynomolgi to the closely related, but less tractable, human malaria parasite P. vivax make it the model parasite of choice for liver biology and vaccine studies pertinent to P. vivax malaria. Molecular and genome-scale studies of P. cynomolgi have relied on the current reference genome sequence, which remains highly fragmented with 1,649 unassigned scaffolds and little representation of the subtelomeres.  Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated a new reference genome sequence, PcyM, sourced from an Indian rhesus monkey. We compare the newly assembled genome sequence with those of several other Plasmodium species, including a re-annotated P. coatneyi assembly.The new PcyM genome assembly is of significantly higher quality than the existing reference, comprising only 56 pieces, no gaps and an improved average gene length. Detailed manual curation has ensured a comprehensive annotation of the genome with 6,632 genes, nearly 1,000 more than previously attributed to P. cynomolgi. The new assembly also has an improved representation of the subtelomeric regions, which account for nearly 40% of the sequence. Within the subtelomeres, we identified more than 1300 Plasmodium interspersed repeat ( pir) genes, as well as a striking expansion of 36 methyltransferase pseudogenes that originated from a single copy on chromosome 9.The manually curated PcyM reference genome sequence is an important new resource for the malaria research community. The high quality and contiguity of the data have enabled the discovery of a novel expansion of methyltransferase in the subtelomeres, and illustrates the new comparative genomics capabilities that are being unlocked by complete reference genomes.


July 19, 2019  |  

Increased risk of low birth weight in women with placental malaria associated with P. falciparum VAR2CSA clade.

Pregnancy associated malaria (PAM) causes adverse pregnancy and birth outcomes owing to Plasmodium falciparum accumulation in the placenta. Placental accumulation is mediated by P. falciparum protein VAR2CSA, a leading PAM-specific vaccine target. The extent of its antigen diversity and impact on clinical outcomes remain poorly understood. Through amplicon deep-sequencing placental malaria samples from women in Malawi and Benin, we assessed sequence diversity of VAR2CSA’s ID1-DBL2x region, containing putative vaccine targets and estimated associations of specific clades with adverse birth outcomes. Overall, var2csa diversity was high and haplotypes subdivided into five clades, the largest two defined by homology to parasites strains, 3D7 or FCR3. Across both cohorts, compared to women infected with only FCR3-like variants, women infected with only 3D7-like variants delivered infants with lower birthweight (difference: -267.99?g; 95% Confidence Interval [CI]: -466.43?g,-69.55?g) and higher odds of low birthweight (<2500?g) (Odds Ratio [OR] 5.41; 95% CI:0.99,29.52) and small-for-gestational-age (OR: 3.65; 95% CI: 1.01,13.38). In two distinct malaria-endemic African settings, parasites harboring 3D7-like variants of VAR2CSA were associated with worse birth outcomes, supporting differential effects of infection with specific parasite strains. The immense diversity coupled with differential clinical effects of this diversity suggest that an effective VAR2CSA-based vaccine may require multivalent activity.


July 19, 2019  |  

The draft genome of Globodera ellingtonae.

Globodera ellingtonae is a newly described potato cyst nematode (PCN) found in Idaho, Oregon, and Argentina. Here, we present a genome assembly for G. ellingtonae, a relative of the quarantine nematodes G. pallida and G. rostochiensis, produced using data from Illumina and Pacific Biosciences DNA sequencing technologies.


July 19, 2019  |  

Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi.

Although the genome of Trypanosoma cruzi, the causative agent of Chagas disease, was first made available in 2005, with additional strains reported later, the intrinsic genome complexity of this parasite (the abundance of repetitive sequences and genes organized in tandem) has traditionally hindered high-quality genome assembly and annotation. This also limits diverse types of analyses that require high degrees of precision. Long reads generated by third-generation sequencing technologies are particularly suitable to address the challenges associated with T. cruzi’s genome since they permit direct determination of the full sequence of large clusters of repetitive sequences without collapsing them. This, in turn, not only allows accurate estimation of gene copy numbers but also circumvents assembly fragmentation. Here, we present the analysis of the genome sequences of two T. cruzi clones: the hybrid TCC (TcVI) and the non-hybrid Dm28c (TcI), determined by PacBio Single Molecular Real-Time (SMRT) technology. The improved assemblies herein obtained permitted us to accurately estimate gene copy numbers, abundance and distribution of repetitive sequences (including satellites and retroelements). We found that the genome of T. cruzi is composed of a ‘core compartment’ and a ‘disruptive compartment’ which exhibit opposite GC content and gene composition. Novel tandem and dispersed repetitive sequences were identified, including some located inside coding sequences. Additionally, homologous chromosomes were separately assembled, allowing us to retrieve haplotypes as separate contigs instead of a unique mosaic sequence. Finally, manual annotation of surface multigene families, mucins and trans-sialidases allows now a better overview of these complex groups of genes.


July 19, 2019  |  

Long read assemblies of geographically dispersed Plasmodium falciparum isolates reveal highly structured subtelomeres.

Background: Although thousands of clinical isolates of Plasmodium falciparum are being sequenced and analysed by short read technology, the data do not resolve the highly variable subtelomeric regions of the genomes that contain polymorphic gene families involved in immune evasion and pathogenesis. There is also no current standard definition of the boundaries of these variable subtelomeric regions. Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated the genomes of 15 P. falciparum isolates, ten of which are newly cultured clinical isolates. We performed comparative analysis of the entire genome with particular emphasis on the subtelomeric regions and the internal var genes clusters.   Results: The nearly complete sequence of these 15 isolates has enabled us to define a highly conserved core genome, to delineate the boundaries of the subtelomeric regions, and to compare these across isolates. We found highly structured variable regions in the genome. Some exported gene families purportedly involved in release of merozoites show copy number variation. As an example of ongoing genome evolution, we found a novel CLAG gene in six isolates.  We also found a novel gene that was relatively enriched in the South East Asian isolates compared to those from Africa. Conclusions: These 15 manually curated new reference genome sequences with their nearly complete subtelomeric regions and fully assembled genes are an important new resource for the malaria research community. We report the overall conserved structure and pattern of important gene families and the more clearly defined subtelomeric regions.


July 19, 2019  |  

Genome organization and DNA accessibility control antigenic variation in trypanosomes.

Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses-Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing-that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.


July 19, 2019  |  

Global genetic diversity of var2csa in Plasmodium falciparum with implications for malaria in pregnancy and vaccine development.

Malaria infection during pregnancy, caused by the sequestering of Plasmodium falciparum parasites in the placenta, leads to high infant mortality and maternal morbidity. The parasite-placenta adherence mechanism is mediated by the VAR2CSA protein, a target for natural occurring immunity. Currently, vaccine development is based on its ID1-DBL2Xb domain however little is known about the global genetic diversity of the encoding var2csa gene, which could influence vaccine efficacy. In a comprehensive analysis of the var2csa gene in >2,000?P. falciparum field isolates across 23 countries, we found that var2csa is duplicated in high prevalence (>25%), African and Oceanian populations harbour a much higher diversity than other regions, and that insertions/deletions are abundant leading to an underestimation of the diversity of the locus. Further, ID1-DBL2Xb haplotypes associated with adverse birth outcomes are present globally, and African-specific haplotypes exist, which should be incorporated into vaccine design.


July 19, 2019  |  

A forward genetic screen reveals a primary role for Plasmodium falciparum Reticulocyte Binding Protein Homologue 2a and 2b in determining alternative erythrocyte invasion pathways.

Invasion of human erythrocytes is essential for Plasmodium falciparum parasite survival and pathogenesis, and is also a complex phenotype. While some later steps in invasion appear to be invariant and essential, the earlier steps of recognition are controlled by a series of redundant, and only partially understood, receptor-ligand interactions. Reverse genetic analysis of laboratory adapted strains has identified multiple genes that when deleted can alter invasion, but how the relative contributions of each gene translate to the phenotypes of clinical isolates is far from clear. We used a forward genetic approach to identify genes responsible for variable erythrocyte invasion by phenotyping the parents and progeny of previously generated experimental genetic crosses. Linkage analysis using whole genome sequencing data revealed a single major locus was responsible for the majority of phenotypic variation in two invasion pathways. This locus contained the PfRh2a and PfRh2b genes, members of one of the major invasion ligand gene families, but not widely thought to play such a prominent role in specifying invasion phenotypes. Variation in invasion pathways was linked to significant differences in PfRh2a and PfRh2b expression between parasite lines, and their role in specifying alternative invasion was confirmed by CRISPR-Cas9-mediated genome editing. Expansion of the analysis to a large set of clinical P. falciparum isolates revealed common deletions, suggesting that variation at this locus is a major cause of invasion phenotypic variation in the endemic setting. This work has implications for blood-stage vaccine development and will help inform the design and location of future large-scale studies of invasion in clinical isolates.


July 7, 2019  |  

Drug resistance analysis by next generation sequencing in Leishmania.

The use of next generation sequencing has the power to expedite the identification of drug resistance determinants and biomarkers and was applied successfully to drug resistance studies in Leishmania. This allowed the identification of modulation in gene expression, gene dosage alterations, changes in chromosome copy numbers and single nucleotide polymorphisms that correlated with resistance in Leishmania strains derived from the laboratory and from the field. An impressive heterogeneity at the population level was also observed, individual clones within populations often differing in both genotypes and phenotypes, hence complicating the elucidation of resistance mechanisms. This review summarizes the most recent highlights that whole genome sequencing brought to our understanding of Leishmania drug resistance and likely new directions.


July 7, 2019  |  

Defining the sequence requirements for the positioning of base J in DNA using SMRT sequencing.

Base J (ß-D-glucosyl-hydroxymethyluracil) replaces 1% of T in the Leishmania genome and is only found in telomeric repeats (99%) and in regions where transcription starts and stops. This highly restricted distribution must be co-determined by the thymidine hydroxylases (JBP1 and JBP2) that catalyze the initial step in J synthesis. To determine the DNA sequences recognized by JBP1/2, we used SMRT sequencing of DNA segments inserted into plasmids grown in Leishmania tarentolae. We show that SMRT sequencing recognizes base J in DNA. Leishmania DNA segments that normally contain J also picked up J when present in the plasmid, whereas control sequences did not. Even a segment of only 10 telomeric (GGGTTA) repeats was modified in the plasmid. We show that J modification usually occurs at pairs of Ts on opposite DNA strands, separated by 12 nucleotides. Modifications occur near G-rich sequences capable of forming G-quadruplexes and JBP2 is needed, as it does not occur in JBP2-null cells. We propose a model whereby de novo J insertion is mediated by JBP2. JBP1 then binds to J and hydroxylates another T 13 bp downstream (but not upstream) on the complementary strand, allowing JBP1 to maintain existing J following DNA replication. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019  |  

Complete genome sequence of Mycoplasma yeatsii strain GM274B (ATCC 43094).

Mycoplasma yeatsii is a goat mycoplasma species that, although an obligate parasite, accommodates this lifestyle as an inapparent commensalist. High-frequency transformation has also been reported for this species. The complete 895,051-bp genome sequence of strain GM274B has been determined, enabling an analysis of the features of this potential cloning host. Copyright © 2015 Calcutt et al.


July 7, 2019  |  

The mitochondrial genomes of a Myxozoan genus Kudoa are extremely divergent in Metazoa.

The Myxozoa are oligo-cellular parasites with alternate hosts-fish and annelid worms-and some myxozoan species harm farmed fish. The phylum Myxozoa, comprising 2,100 species, was difficult to position in the tree of life, due to its fast evolutionary rate. Recent phylogenomic studies utilizing an extensive number of nuclear-encoded genes have confirmed that Myxozoans belong to Cnidaria. Nevertheless, the evolution of parasitism and extreme body simplification in Myxozoa is not well understood, and no myxozoan mitochondrial DNA sequence has been reported to date. To further elucidate the evolution of Myxozoa, we sequenced the mitochondrial genomes of the myxozoan species Kudoa septempunctata, K. hexapunctata and K. iwatai and compared them with those of other metazoans. The Kudoa mitochondrial genomes code for ribosomal RNAs, transfer RNAs, eight proteins for oxidative phosphorylation and three proteins of unknown function, and they are among the metazoan mitochondrial genomes coding the fewest proteins. The mitochondrial-encoded proteins were extremely divergent, exhibiting the fastest evolutionary rate in Metazoa. Nevertheless, the dN/dS ratios of the protein genes in genus Kudoa were approximately 0.1 and similar to other cnidarians, indicating that the genes are under negative selection. Despite the divergent genetic content, active oxidative phosphorylation was indicated by the transcriptome, metabolism and structure of mitochondria in K. septempunctata. As possible causes, we attributed the divergence to the population genetic characteristics shared between the two most divergent clades, Ctenophora and Myxozoa, and to the parasitic lifestyle of Myxozoa. The fast-evolving, functional mitochondria of the genus Kudoa expanded our understanding of metazoan mitochondrial evolution.


July 7, 2019  |  

Complete genome sequence of Bacillus thuringiensis YC-10, a novel active strain against plant-parasitic nematodes.

Bacillus thuringiensis is an important microbial biopesticide for controlling agricultural pests by the production of toxic parasporal crystals proteins.Here,we report the finished annotated genome sequence of B. thuringiensis YC-10,which is highly toxic to nematodes.The complete genome sequence consists of a circular chromosome and nine circular plasmids,which the biggest plasmid harbors six parasporal crystals proteins genes consisting of cry1Aa, cry1Ac, cry1Ia, cry2Aa, cry2Ab and cryB1. The crystals proteins of Cry1Ia and Cry1Aa have high nematicidal activity against Meloidogyne incognita. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

A novel type pathway-specific regulator and dynamic genome environments of solanapyrone biosynthesis gene cluster in the fungus Ascochyta rabiei.

Secondary metabolite genes are often clustered together and situated in particular genomic regions, like the subtelomere, that can facilitate niche adaptation in fungi. Solanapyrones are toxic secondary metabolites produced by fungi occupying different ecological niches. Full-genome sequencing of the ascomycete Ascochyta rabiei revealed a solanapyrone biosynthesis gene cluster embedded in an AT-rich region proximal to a telomere end and surrounded by Tc1/Mariner-type transposable elements. The highly AT-rich environment of the solanapyrone cluster is likely the product of repeat-induced point mutations. Several secondary metabolism-related genes were found in the flanking regions of the solanapyrone cluster. Although the solanapyrone cluster appears to be resistant to repeat-induced point mutations, a P450 monooxygenase gene adjacent to the cluster has been degraded by such mutations. Among the six solanapyrone cluster genes (sol1 to sol6), sol4 encodes a novel type of Zn(II)2Cys6 zinc cluster transcription factor. Deletion of sol4 resulted in the complete loss of solanapyrone production but did not compromise growth, sporulation, or virulence. Gene expression studies with the sol4 deletion and sol4-overexpressing mutants delimited the boundaries of the solanapyrone gene cluster and revealed that sol4 is likely a specific regulator of solanapyrone biosynthesis and appears to be necessary and sufficient for induction of the solanapyrone cluster genes. Despite the dynamic surrounding genomic regions, the solanapyrone gene cluster has maintained its integrity, suggesting important roles of solanapyrones in fungal biology. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Dual functions of Macpiwi1 in transposon silencing and stem cell maintenance in the flatworm Macrostomum lignano.

PIWI proteins and piRNA pathways are essential for transposon silencing and some aspects of gene regulation during animal germline development. In contrast to most animal species, some flatworms also express PIWIs and piRNAs in somatic stem cells, where they are required for tissue renewal and regeneration. Here, we have identified and characterized piRNAs and PIWI proteins in the emerging model flatworm Macrostomum lignano. We found that M. lignano encodes at least three PIWI proteins. One of these, Macpiwi1, acts as a key component of the canonical piRNA pathway in the germline and in somatic stem cells. Knockdown of Macpiwi1 dramatically reduces piRNA levels, derepresses transposons, and severely impacts stem cell maintenance. Knockdown of the piRNA biogenesis factor Macvasa caused an even greater reduction in piRNA levels with a corresponding increase in transposons. Yet, in Macvasa knockdown animals, we detected no major impact on stem cell self-renewal. These results may suggest stem cell maintenance functions of PIWI proteins in flatworms that are distinguishable from their impact on transposons and that might function independently of what are considered canonical piRNA populations.© 2015 Zhou et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.