fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

Improving eukaryotic genome annotation using single molecule mRNA sequencing.

The advantages of Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology include long reads, low systematic bias, and high consensus read accuracy. Here we use these attributes to improve on the genome annotation of the parasitic hookworm Ancylostoma ceylanicum using PacBio RNA-Seq.We sequenced 192,888 circular consensus sequences (CCS) derived from cDNAs generated using the CloneTech SMARTer system. These SMARTer-SMRT libraries were normalized and size-selected providing a robust population of expressed structural genes for subsequent genome annotation. We demonstrate PacBio mRNA sequences based genome annotation improvement, compared to genome annotation using conventional sequencing-by-synthesis alone, by identifying 1609 (9.2%) new genes, extended the…

Read More »

Sunday, September 22, 2019

Plasmodium knowlesi: a superb in vivo nonhuman primate model of antigenic variation in malaria.

Antigenic variation in malaria was discovered in Plasmodium knowlesi studies involving longitudinal infections of rhesus macaques (M. mulatta). The variant proteins, known as the P. knowlesi Schizont Infected Cell Agglutination (SICA) antigens and the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) antigens, expressed by the SICAvar and var multigene families, respectively, have been studied for over 30 years. Expression of the SICA antigens in P. knowlesi requires a splenic component, and specific antibodies are necessary for variant antigen switch events in vivo. Outstanding questions revolve around the role of the spleen and the mechanisms by which the expression of these…

Read More »

Sunday, September 22, 2019

The genomes of Crithidia bombi and C. expoeki, common parasites of bumblebees.

Trypanosomatids (Trypanosomatidae, Kinetoplastida) are flagellated protozoa containing many parasites of medical or agricultural importance. Among those, Crithidia bombi and C. expoeki, are common parasites in bumble bees around the world, and phylogenetically close to Leishmania and Leptomonas. They have a simple and direct life cycle with one host, and partially castrate the founding queens greatly reducing their fitness. Here, we report the nuclear genome sequences of one clone of each species, extracted from a field-collected infection. Using a combination of Roche 454 FLX Titanium, Pacific Biosciences PacBio RS, and Illumina GA2 instruments for C. bombi, and PacBio for C. expoeki,…

Read More »

Sunday, September 22, 2019

A reference genome and methylome for the Plasmodium knowlesi A1-H.1 line.

Plasmodium knowlesi, a common parasite of macaques, is recognised as a significant cause of human malaria in Malaysia. The P. knowlesi A1H1 line has been adapted to continuous culture in human erythrocytes, successfully providing an in vitro model to study the parasite. We have assembled a reference genome for the PkA1-H.1 line using PacBio long read combined with Illumina short read sequence data. Compared with the H-strain reference, the new reference has improved genome coverage and a novel description of methylation sites. The PkA1-H.1 reference will enhance the capabilities of the in vitro model to improve the understanding of P.…

Read More »

Sunday, September 22, 2019

Comparative heterochromatin profiling reveals conserved and unique epigenome signatures linked to adaptation and development of malaria parasites.

Heterochromatin-dependent gene silencing is central to the adaptation and survival of Plasmodium falciparum malaria parasites, allowing clonally variant gene expression during blood infection in humans. By assessing genome-wide heterochromatin protein 1 (HP1) occupancy, we present a comprehensive analysis of heterochromatin landscapes across different Plasmodium species, strains, and life cycle stages. Common targets of epigenetic silencing include fast-evolving multi-gene families encoding surface antigens and a small set of conserved HP1-associated genes with regulatory potential. Many P. falciparum heterochromatic genes are marked in a strain-specific manner, increasing the parasite’s adaptive capacity. Whereas heterochromatin is strictly maintained during mitotic proliferation of asexual blood stage…

Read More »

Sunday, September 22, 2019

RTS,S/AS01 malaria vaccine mismatch observed among Plasmodium falciparum isolates from southern and central Africa and globally.

The RTS,S/AS01 malaria vaccine encompasses the central repeats and C-terminal of Plasmodium falciparum circumsporozoite protein (PfCSP). Although no Phase II clinical trial studies observed evidence of strain-specific immunity, recent studies show a decrease in vaccine efficacy against non-vaccine strain parasites. In light of goals to reduce malaria morbidity, anticipating the effectiveness of RTS,S/AS01 is critical to planning widespread vaccine introduction. We deep sequenced C-terminal Pfcsp from 77 individuals living along the international border in Luapula Province, Zambia and Haut-Katanga Province, the Democratic Republic of the Congo (DRC) and compared translated amino acid haplotypes to the 3D7 vaccine strain. Only 5.2%…

Read More »

Sunday, September 22, 2019

The genome sequence of “Candidatus Fokinia solitaria”: Insights on reductive evolution in Rickettsiales.

Candidatus Fokinia solitaria is an obligate intracellular endosymbiont of a unicellular eukaryote, a ciliate of the genus Paramecium. Here, we present the genome sequence of this bacterium and subsequent analysis. Phylogenomic analysis confirmed the previously reported positioning of the symbiont within the “Candidatus Midichloriaceae” family (order Rickettsiales), as well as its high sequence divergence from other members of the family, indicative of fast sequence evolution. Consistently with this high evolutionary rate, a comparative genomic analysis revealed that the genome of this symbiont is the smallest of the Rickettsiales to date. The reduced genome does not present flagellar genes, nor the…

Read More »

Sunday, September 22, 2019

Genomes of all known members of a Plasmodium subgenus reveal paths to virulent human malaria.

Plasmodium falciparum, the most virulent agent of human malaria, shares a recent common ancestor with the gorilla parasite Plasmodium praefalciparum. Little is known about the other gorilla- and chimpanzee-infecting species in the same (Laverania) subgenus as P. falciparum, but none of them are capable of establishing repeated infection and transmission in humans. To elucidate underlying mechanisms and the evolutionary history of this subgenus, we have generated multiple genomes from all known Laverania species. The completeness of our dataset allows us to conclude that interspecific gene transfers, as well as convergent evolution, were important in the evolution of these species. Striking…

Read More »

Sunday, September 22, 2019

Footprints of parasitism in the genome of the parasitic flowering plant Cuscuta campestris.

A parasitic lifestyle, where plants procure some or all of their nutrients from other living plants, has evolved independently in many dicotyledonous plant families and is a major threat for agriculture globally. Nevertheless, no genome sequence of a parasitic plant has been reported to date. Here we describe the genome sequence of the parasitic field dodder, Cuscuta campestris. The genome contains signatures of a fairly recent whole-genome duplication and lacks genes for pathways superfluous to a parasitic lifestyle. Specifically, genes needed for high photosynthetic activity are lost, explaining the low photosynthesis rates displayed by the parasite. Moreover, several genes involved…

Read More »

Sunday, September 22, 2019

Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis.

Dodders (Cuscuta spp., Convolvulaceae) are root- and leafless parasitic plants. The physiology, ecology, and evolution of these obligate parasites are poorly understood. A high-quality reference genome of Cuscuta australis was assembled. Our analyses reveal that Cuscuta experienced accelerated molecular evolution, and Cuscuta and the convolvulaceous morning glory (Ipomoea) shared a common whole-genome triplication event before their divergence. C. australis genome harbors 19,671 protein-coding genes, and importantly, 11.7% of the conserved orthologs in autotrophic plants are lost in C. australis. Many of these gene loss events likely result from its parasitic lifestyle and the massive changes of its body plan. Moreover,…

Read More »

Sunday, September 22, 2019

Plasmodium vivax-like genome sequences shed new insights into Plasmodium vivax biology and evolution.

Although Plasmodium vivax is responsible for the majority of malaria infections outside Africa, little is known about its evolution and pathway to humans. Its closest genetic relative, P. vivax-like, was discovered in African great apes and is hypothesized to have given rise to P. vivax in humans. To unravel the evolutionary history and adaptation of P. vivax to different host environments, we generated using long- and short-read sequence technologies 2 new P. vivax-like reference genomes and 9 additional P. vivax-like genotypes. Analyses show that the genomes of P. vivax and P. vivax-like are highly similar and colinear within the core…

Read More »

Sunday, September 22, 2019

Exploring benzimidazole resistance in Haemonchus contortus by next generation sequencing and droplet digital PCR.

Anthelmintic resistance in gastrointestinal nematode (GIN) parasites of grazing ruminants is on the rise in countries across the world. Haemonchus contortus is one of most frequently encountered drug-resistant GINs in small ruminants. This blood-sucking abomasal nematode contributes to massive treatment costs and poses a serious threat to farm animal health. To prevent the establishment of resistant strains of this parasite, up-to-date molecular techniques need to be proposed which would allow for quick, cheap and accurate identification of individuals infected with resistant worms. The effort has been made in the previous decade, with the development of the pyrosequencing method to detect…

Read More »

Sunday, September 22, 2019

The structure of a conserved telomeric region associated with variant antigen loci in the blood parasite Trypanosoma congolense

African trypanosomiasis is a vector-borne disease of humans and livestock caused by African trypanosomes (Trypanosoma spp.). Survival in the vertebrate bloodstream depends on antigenic variation of Variant Surface Glycoproteins (VSGs) coating the parasite surface. In T. brucei, a model for antigenic variation, monoallelic VSG expression originates from dedicated VSG expression sites (VES). Trypanosoma brucei VES have a conserved structure consisting of a telomeric VSG locus downstream of unique, repeat sequences, and an independent promoter. Additional protein-coding sequences, known as “Expression Site Associated Genes (ESAGs)”, are also often present and are implicated in diverse, bloodstream-stage functions. Trypanosoma congolense is a related…

Read More »

Sunday, September 22, 2019

The genome of tapeworm Taenia multiceps sheds light on understanding parasitic mechanism and control of coenurosis disease.

Coenurosis, caused by the larval coenurus of the tapeworm Taenia multiceps, is a fatal central nervous system disease in both sheep and humans. Though treatment and prevention options are available, the control of coenurosis still faces presents great challenges. Here, we present a high-quality genome sequence of T. multiceps in which 240 Mb (96%) of the genome has been successfully assembled using Pacbio single-molecule real-time (SMRT) and Hi-C data with a N50 length of 44.8 Mb. In total, 49.5 Mb (20.6%) repeat sequences and 13, 013 gene models were identified. We found that Taenia spp. have an expansion of transposable…

Read More »

Sunday, September 22, 2019

Genomic assemblies of newly sequenced Trypanosoma cruzi strains reveal new genomic expansion and greater complexity.

Chagas disease is a complex illness caused by the protozoan Trypanosoma cruzi displaying highly diverse clinical outcomes. In this sense, the genome sequence elucidation and comparison between strains may lead to disease understanding. Here, two new T. cruzi strains, have been sequenced, Y using Illumina and Bug2148 using PacBio, assembled, analyzed and compared with the T. cruzi annotated genomes available to date. The assembly stats from the new sequences show effective improvement of T. cruzi genome over the actual ones. Such as, the largest contig assembled (1.3?Mb in Bug2148) in de novo attempts and the highest mean assembly coverage (71X…

Read More »

1 2 3 4 5 8

Subscribe for blog updates:

Archives