X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, October 25, 2020

Podcast: Frontiers of sequencing – Putting long reads and graph assemblies to work

The Mike Schatz lab at Cold Spring Harbor is well know for de novo genome assemblies and their work on structural variation in cancer genomes. In this Mendelspod podcast, lab leader, Mike Schatz, and doctorate student, Maria Nattestad tell of two new projects that include the de novo assembly of a very difficult but important flatworm genome and, secondly, making better variant calls for oncogenes such as HER2.

Read More »

Tuesday, April 21, 2020

Divergent selection following speciation in two ectoparasitic honey bee mites

Multispecies host-parasite evolution is common, but how parasites evolve after speciating remains poorly understood. Shared evolutionary history and physiology may propel species along similar evolutionary trajectories whereas pursuing different strategies can reduce competition. We test these scenarios in the economically important association between honey bees and ectoparasitic mites by sequencing the genomes of the sister mite species Varroa destructor and Varroa jacobsoni. These genomes were closely related, with 99.7% sequence identity. Among the 9,628 orthologous genes, 4.8% showed signs of positive selection in at least one species. Divergent selective trajectories were discovered in conserved chemosensory gene families (IGR, SNMP), and…

Read More »

Tuesday, April 21, 2020

Morphological and genomic characterisation of the hybrid schistosome infecting humans in Europe reveals a complex admixture between Schistosoma haematobium and Schistosoma bovis parasites

Schistosomes cause schistosomiasis, the worldtextquoterights second most important parasitic disease after malaria. A peculiar feature of schistosomes is their ability to produce viable and fertile hybrids. Originally only present in the tropics, schistosomiasis is now also endemic in Europe. Based on two genetic markers the European species had been identified as a hybrid between the ruminant-infective Schistosoma bovis and the human-infective Schistosoma haematobium.Here we describe for the first time the genomic composition of the European schistosome hybrid (77% of S. haematobium and 23% of S. bovis origins), its morphometric parameters and its compatibility with the European vector snail and intermediate…

Read More »

Tuesday, April 21, 2020

Draft Genome Sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, Potential Etiological Agents of Diffuse Cutaneous Leishmaniasis.

We present here the draft genome sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, potential etiological agents of diffuse cutaneous leishmaniasis (DCL). Sequence data were obtained using PacBio and MiSeq platforms. The PacBio assemblies generated using Canu v1.6 are more contiguous than are those in the available data.

Read More »

Tuesday, April 21, 2020

Whole-genome sequence of the oriental lung fluke Paragonimus westermani.

Foodborne infections caused by lung flukes of the genus Paragonimus are a significant and widespread public health problem in tropical areas. Approximately 50 Paragonimus species have been reported to infect animals and humans, but Paragonimus westermani is responsible for the bulk of human disease. Despite their medical and economic importance, no genome sequence for any Paragonimus species is available.We sequenced and assembled the genome of P. westermani, which is among the largest of the known pathogen genomes with an estimated size of 1.1 Gb. A 922.8 Mb genome assembly was generated from Illumina and Pacific Biosciences (PacBio) sequence data, covering 84% of…

Read More »

Tuesday, April 21, 2020

Rapid antigen diversification through mitotic recombination in the human malaria parasite Plasmodium falciparum.

Malaria parasites possess the remarkable ability to maintain chronic infections that fail to elicit a protective immune response, characteristics that have stymied vaccine development and cause people living in endemic regions to remain at risk of malaria despite previous exposure to the disease. These traits stem from the tremendous antigenic diversity displayed by parasites circulating in the field. For Plasmodium falciparum, the most virulent of the human malaria parasites, this diversity is exemplified by the variant gene family called var, which encodes the major surface antigen displayed on infected red blood cells (RBCs). This gene family exhibits virtually limitless diversity…

Read More »

Tuesday, April 21, 2020

Whole-genome sequence of the bovine blood fluke Schistosoma bovis supports interspecific hybridization with S. haematobium.

Mesenteric infection by the parasitic blood fluke Schistosoma bovis is a common veterinary problem in Africa and the Middle East and occasionally in the Mediterranean Region. The species also has the ability to form interspecific hybrids with the human parasite S. haematobium with natural hybridisation observed in West Africa, presenting possible zoonotic transmission. Additionally, this exchange of alleles between species may dramatically influence disease dynamics and parasite evolution. We have generated a 374 Mb assembly of the S. bovis genome using Illumina and PacBio-based technologies. Despite infecting different hosts and organs, the genome sequences of S. bovis and S. haematobium…

Read More »

Tuesday, April 21, 2020

Draft Genome Sequence of Trypanosoma equiperdum Strain IVM-t1.

Trypanosoma equiperdum primarily parasitizes the genital organs and causes dourine in equidae. We isolated a new T. equiperdum strain, T. equiperdum IVM-t1, from the urogenital tract of a horse definitively diagnosed as having dourine in Mongolia. Here, we report the whole-genome sequence, the predicted gene models, and their annotations.

Read More »

Tuesday, April 21, 2020

Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host.

In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether…

Read More »

Tuesday, April 21, 2020

Application of long read sequencing to determine expressed antigen diversity in Trypanosoma brucei infections.

Antigenic variation is employed by many pathogens to evade the host immune response, and Trypanosoma brucei has evolved a complex system to achieve this phenotype, involving sequential use of variant surface glycoprotein (VSG) genes encoded from a large repertoire of ~2,000 genes. T. brucei express multiple, sometimes closely related, VSGs in a population at any one time, and the ability to resolve and analyse this diversity has been limited. We applied long read sequencing (PacBio) to VSG amplicons generated from blood extracted from batches of mice sacrificed at time points (days 3, 6, 10 and 12) post-infection with T. brucei…

Read More »

Tuesday, April 21, 2020

Genome and transcriptome analyses of Leishmania spp.: opening Pandora’s box.

In the last 30 years, significant advances in genetic manipulation tools along with complete genome and transcriptome sequencing have advanced our understanding of the biology of Leishmania parasites and their interplay with the sand fly and mammalian hosts. High-throughput sequencing in association with CRISPR/Cas9 have prepared the ground for significant advances. Given the richness of the progress made over the last decade, in this article, we focused on the most recent contributions of genome-wide and transcriptome analyses of Leishmania spp., which permit the comparison of life cycle stages, the evaluation of different strains and species in their natural niches and…

Read More »

Tuesday, April 21, 2020

Nephromyces encodes a urate metabolism pathway and predicted peroxisomes, demonstrating that these are not ancient losses of apicomplexans.

The phylum Apicomplexa is a quintessentially parasitic lineage, whose members infect a broad range of animals. One exception to this may be the apicomplexan genus Nephromyces, which has been described as having a mutualistic relationship with its host. Here we analyze transcriptome data from Nephromyces and its parasitic sister taxon, Cardiosporidium, revealing an ancestral purine degradation pathway thought to have been lost early in apicomplexan evolution. The predicted localization of many of the purine degradation enzymes to peroxisomes, and the in silico identification of a full set of peroxisome proteins, indicates that loss of both features in other apicomplexans occurred…

Read More »

Tuesday, April 21, 2020

A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy.

Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are…

Read More »

Tuesday, April 21, 2020

The Genome Sequence of the Anthelmintic-Susceptible New Zealand Haemonchus contortus.

Internal parasitic nematodes are a global animal health issue causing drastic losses in livestock. Here, we report a H. contortus representative draft genome to serve as a genetic resource to the scientific community and support future experimental research of molecular mechanisms in related parasites. A de novo hybrid assembly was generated from PCR-free whole genome sequence data, resulting in a chromosome-level assembly that is 465 Mb in size encoding 22,341 genes. The genome sequence presented here is consistent with the genome architecture of the existing Haemonchus species and is a valuable resource for future studies regarding population genetic structures of…

Read More »

1 2 3 8

Subscribe for blog updates:

Archives