X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
May 1, 2019

Mitochondrial genome and transcriptome analysis of five alloplasmic male-sterile lines in Brassica juncea.

Alloplasmic lines, in which the nuclear genome is combined with wild cytoplasm, are often characterized by cytoplasmic male sterility (CMS), regardless of whether it was derived from sexual or somatic hybridization with wild relatives. In this study, we sequenced and analyzed the mitochondrial genomes of five such alloplasmic lines in Brassica juncea.The assembled and annotated mitochondrial genomes of the five alloplasmic lines were found to have virtually identical gene contents. They preserved most of the ancestral mitochondrial segments, and the same candidate male sterility gene (orf108) was found harbored in mitotype-specific sequences. We also detected promiscuous sequences of chloroplast origin…

Read More »

May 1, 2019

Draft Genome Sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, Potential Etiological Agents of Diffuse Cutaneous Leishmaniasis.

We present here the draft genome sequences of Leishmania (Leishmania) amazonensis, Leishmania (Leishmania) mexicana, and Leishmania (Leishmania) aethiopica, potential etiological agents of diffuse cutaneous leishmaniasis (DCL). Sequence data were obtained using PacBio and MiSeq platforms. The PacBio assemblies generated using Canu v1.6 are more contiguous than are those in the available data.

Read More »

May 1, 2019

Complete genome sequences of pooled genomic DNA from 10 marine bacteria using PacBio long-read sequencing.

High-quality, completed genomes are important to understand the functions of marine bacteria. PacBio sequencing technology provides a powerful way to obtain high-quality completed genomes. However individual library production is currently still costly, limiting the utility of the PacBio system for high-throughput genomics. Here we investigate how to generate high-quality genomes from pooled marine bacterial genomes.Pooled genomic DNA from 10 marine bacteria were subjected to a single library production and sequenced with eight SMRT cells on the PacBio RS II sequencing platform. In total, 7.35 Gbp of long-read data was generated, which is equivalent to an approximate 168× average coverage for…

Read More »

May 1, 2019

Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation.

A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3?Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a…

Read More »

May 1, 2019

Finding Nemo’s Genes: A chromosome-scale reference assembly of the genome of the orange clownfish Amphiprion percula.

The iconic orange clownfish, Amphiprion percula, is a model organism for studying the ecology and evolution of reef fishes, including patterns of population connectivity, sex change, social organization, habitat selection and adaptation to climate change. Notably, the orange clownfish is the only reef fish for which a complete larval dispersal kernel has been established and was the first fish species for which it was demonstrated that antipredator responses of reef fishes could be impaired by ocean acidification. Despite its importance, molecular resources for this species remain scarce and until now it lacked a reference genome assembly. Here, we present a…

Read More »

May 1, 2019

Targeted Long-Read RNA Sequencing Demonstrates Transcriptional Diversity Driven by Splice-Site Variation in MYBPC3.

To date, clinical sequencing has focused on genomic DNA using targeted panels and exome sequencing. Sequencing of a large hypertrophic cardiomyopathy (HCM) cohort revealed that positive identification of a disease-associated variant was returned in only 32% of patients, with an additional 15% receiving inconclusive results. When genome sequencing fails to reveal causative variants, the transcriptome may provide additional diagnostic clarity. A recent study examining patients with genetically undiagnosed muscle disorders found that RNA sequencing, when used as a complement to exome and whole genome sequencing, had an overall diagnosis rate of 35%.

Read More »

May 1, 2019

Improved annotation of the domestic pig genome through integration of Iso-Seq and RNA-seq data.

Our understanding of the pig transcriptome is limited. RNA transcript diversity among nine tissues was assessed using poly(A) selected single-molecule long-read isoform sequencing (Iso-seq) and Illumina RNA sequencing (RNA-seq) from a single White cross-bred pig. Across tissues, a total of 67,746 unique transcripts were observed, including 60.5% predicted protein-coding, 36.2% long non-coding RNA and 3.3% nonsense-mediated decay transcripts. On average, 90% of the splice junctions were supported by RNA-seq within tissue. A large proportion (80%) represented novel transcripts, mostly produced by known protein-coding genes (70%), while 17% corresponded to novel genes. On average, four transcripts per known gene (tpg) were…

Read More »

May 1, 2019

Investigating the bacterial microbiota of traditional fermented dairy products using propidium monoazide with single-molecule real-time sequencing.

Traditional fermented dairy foods have been the major components of the Mongolian diet for millennia. In this study, we used propidium monoazide (PMA; binds to DNA of nonviable cells so that only viable cells are enumerated) and single-molecule real-time sequencing (SMRT) technology to investigate the total and viable bacterial compositions of 19 traditional fermented dairy foods, including koumiss from Inner Mongolia (KIM), koumiss from Mongolia (KM), and fermented cow milk from Mongolia (CM); sample groups treated with PMA were designated PKIM, PKM, and PCM. Full-length 16S rRNA sequencing identified 195 bacterial species in 121 genera and 13 phyla in PMA-treated…

Read More »

May 1, 2019

First Complete Genome Sequence of Haematobacter massiliensis OT1 (Chromosome and Multiple Plasmids), Isolated from Human Skin.

Haematobacter massiliensis OT1 was isolated from human skin. This strain can catabolize 4-hydroxybenzoate. Here, we present the first complete whole-genome sequence of this species, which has one chromosome (2,467 kbp) and nine plasmids (total of 1,765 kbp). The analysis of the H. massiliensis OT1 genome indicated a potential for autotrophic growth.Copyright © 2019 Lim et al.

Read More »

May 1, 2019

The genomes of polyextremophilic Cyanidiales contain 1% horizontally transferred genes with diverse adaptive functions.

The role and extent of horizontal gene transfer (HGT) in eukaryotes are hotly disputed topics that impact our understanding of the origin of metabolic processes and the role of organelles in cellular evolution. We addressed this issue by analyzing 10 novel Cyanidiales genomes and determined that 1% of their gene inventory is HGT-derived. Numerous HGT candidates share a close phylogenetic relationship with prokaryotes that live in similar habitats as the Cyanidiales and encode functions related to polyextremophily. HGT candidates differ from native genes in GC-content, number of splice sites, and gene expression. HGT candidates are more prone to loss, which…

Read More »

May 1, 2019

The genome sequence of segmental allotetraploid peanut Arachis hypogaea.

Like many other crops, the cultivated peanut (Arachis hypogaea L.) is of hybrid origin and has a polyploid genome that contains essentially complete sets of chromosomes from two ancestral species. Here we report the genome sequence of peanut and show that after its polyploid origin, the genome has evolved through mobile-element activity, deletions and by the flow of genetic information between corresponding ancestral chromosomes (that is, homeologous recombination). Uniformity of patterns of homeologous recombination at the ends of chromosomes favors a single origin for cultivated peanut and its wild counterpart A. monticola. However, through much of the genome, homeologous recombination…

Read More »

May 1, 2019

First Draft Genome Sequence of a Pearl Millet Blast Pathogen, Magnaporthe grisea Strain PMg_Dl, Obtained Using PacBio Single-Molecule Real-Time and Illumina NextSeq 500 Sequencing.

The first draft genome sequence of the pearl millet blast pathogen Magnaporthe grisea PMg_Dl from India is presented. The genome information of M. grisea will be useful to understand the Magnaporthe speciation, genetic diversity, environmental adaptation, and pathogenic and host range determinants.Copyright © 2019 Prakash et al.

Read More »

May 1, 2019

Genome Sequence of Streptomyces cavourensis 1AS2a, a Rhizobacterium Isolated from the Brazilian Cerrado Biome.

Streptomyces cavourensis strain 1AS2a, isolated from wheat rhizosphere in the Brazilian Neotropical savanna, exhibits strong antimicrobial activities. Its genome comprises 7,600,475?bp with 6,590 open reading frames (ORFs) that reveal 30 biosynthetic gene clusters (BGCs). It provides a genetic basis for further research of the potential of this strain for the production of antimicrobial compounds.Copyright © 2019 Vargas Hoyos et al.

Read More »

May 1, 2019

The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition.

Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits.We obtained >187.22 and 178.87 gigabases of sequence, and ~288× and 248× genome coverage, to a pecan cultivar ("Pawnee") and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and…

Read More »

May 1, 2019

Emergence of plasmid-mediated high-level tigecycline resistance genes in animals and humans.

Tigecycline is a last-resort antibiotic that is used to treat severe infections caused by extensively drug-resistant bacteria. tet(X) has been shown to encode a flavin-dependent monooxygenase that modifies tigecycline1,2. Here, we report two unique mobile tigecycline-resistance genes, tet(X3) and tet(X4), in numerous Enterobacteriaceae and Acinetobacter that were isolated from animals, meat for consumption and humans. Tet(X3) and Tet(X4) inactivate all tetracyclines, including tigecycline and the newly FDA-approved eravacycline and omadacycline. Both tet(X3) and tet(X4) increase (by 64-128-fold) the tigecycline minimal inhibitory concentration values for Escherichia coli, Klebsiella pneumoniae and Acinetobacter baumannii. In addition, both Tet(X3) (A. baumannii) and Tet(X4) (E.…

Read More »

1 2 3 4 5 6 66

Subscribe for blog updates:

Archives