X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
February 16, 2018

Oryza glaberrima Steud.

Oryza glaberrima is the African cultivated rice species, domesticated from its wild ancestor by farmers living in Inland Delta of Niger River. Several studies indicated that it has extremely narrow genetic diversity compared to both its wild progenitor, Oryza barthii and the Asian rice, Oryza sativa which can mainly be attributed to a severe domestication bottleneck. Despite its scarcity in farmer’s field due to its low yield potential, high shattering and lodging susceptibility, O. glaberrima is of great value not only to Africa but also globally. Perhaps its greatest contribution to regional and global food security is as a source…

Read More »

February 1, 2018

Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza.

The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young 'AA' subclade containing the two domesticated species. This study highlights the prevalence of functionally…

Read More »

December 19, 2017

Assembly of an early-matured japonica (Geng) rice genome, Suijing18, based on PacBio and Illumina sequencing.

The early-matured japonica (Geng) rice variety, Suijing18 (SJ18), carries multiple elite traits including durable blast resistance, good grain quality, and high yield. Using PacBio SMRT technology, we produced over 25?Gb of long-read sequencing raw data from SJ18 with a coverage of 62×. Using Illumina paired-end whole-genome shotgun sequencing technology, we generated 59?Gb of short-read sequencing data from SJ18 (23.6?Gb from a 200?bp library with a coverage of 59× and 35.4?Gb from an 800?bp library with a coverage of 88×). With these data, we assembled a single SJ18 genome and then generated a set of annotation data. These data sets can…

Read More »

June 1, 2017

Sequencing of Australian wild rice genomes reveals ancestral relationships with domesticated rice.

The related A genome species of the Oryza genus are the effective gene pool for rice. Here, we report draft genomes for two Australian wild A genome taxa: O. rufipogon-like population, referred to as Taxon A, and O. meridionalis-like population, referred to as Taxon B. These two taxa were sequenced and assembled by integration of short- and long-read next-generation sequencing (NGS) data to create a genomic platform for a wider rice gene pool. Here, we report that, despite the distinct chloroplast genome, the nuclear genome of the Australian Taxon A has a sequence that is much closer to that of domesticated rice…

Read More »

January 16, 2017

PAG PacBio Workshop: Introducing 5 new high-quality PacBio genome assemblies for rice to help solve the 10-billion people question

At PAG 2017, Rod Wing presented five new, high-quality rice genome assemblies developed with SMRT Sequencing, including one that has eight complete chromosomes including centromeres. He also offered an early look at data generated with the Sequel System for a new assembly underway. This work is done with the goal of developing rice varieties that will be better suited to feeding a rapidly growing global population.

Read More »

April 1, 2016

Single-molecule sequencing assists genome assembly improvement and structural variation inference.

Dear editor, The single-molecule real-time (SMRT) sequencing platform presented by Pacific Biosciences (PacBio) is regarded as a third-generation sequencing technology (Eid et al., 2009, Roberts et al., 2013). PacBio delivers long reads from several to tens of kilobases (kbs), which are ideal for filling unsequenced gaps due to unusual sequence contexts, such as high-GC content or repeat-rich regions (Bashir et al., 2012, Berlin et al., 2015, Chaisson et al., 2015). PacBio long reads are also favorable for detecting large DNA fragments harboring structural variations (SVs), such as inversions, translocations, duplications, and large insertions/deletions (indels) (Ritz et al., 2010, English et…

Read More »

February 5, 2016

Exploring structural variants in environmentally sensitive gene families.

Environmentally sensitive plant gene families like NBS-LRRs, receptor kinases, defensins and others, are known to be highly variable. However, most existing strategies for discovering and describing structural variation in complex gene families provide incomplete and imperfect results. The move to de novo genome assemblies for multiple accessions or individuals within a species is enabling more comprehensive and accurate insights about gene family variation. Earlier array-based genome hybridization and sequence-based read mapping methods were limited by their reliance on a reference genome and by misplacement of paralogous sequences. Variant discovery based on de novo genome assemblies overcome the problems arising from…

Read More »

Subscribe for blog updates:

Archives