Menu
July 7, 2019  |  

Complete genome sequence of Spirosoma radiotolerans, a gamma-radiation-resistant bacterium isolated from rice field in South Korea.

Spirosoma radiotolerans is a Gram-negative, short rod-shaped and gamma-radiation-resistant bacterium isolated from rice field in South Korea (GPS; 37°34’30?N, 127°00’30?E). The complete genome of S. radiotolerans consists of a chromosome (7,029,352bp). From the genome sequence database, we have identified the cluster of genes responsible for DNA recovery from ionizing radiation. The key enzymes for the nucleotide excision repair (NER) were investigated and were identified, suggesting that S. radiotolerans DG5A use (NER) pathways for efficient removal of pyrimidine dimers which are the most abundant type of UV-induced damage. Complete genome information enables further studies on the DNA repair mechanisms during the ionizing radiation. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Deinococcus soli N5(T), a gamma-radiation- resistant bacterium isolated from rice field in South Korea.

A Gram-negative, non-motile and short-rod shaped and gamma-radiation-resistant bacterium Deinococcus soli N5(T), isolated from a rice field soil in South Korea. The complete genome of D. soli N5(T) consists of a chromosome (3,236,984bp). The key enzymes for the central DNA repair mechanisms were present in the genome. The enzyme coding genes has been identified which is involving in the nucleotide excision repair (NER) pathway. The gene cluster in the genome sequence suggest that the D. soli N5(T) use (NER) pathways for efficient removal of pyrimidine dimers that are the most abundant type of UV- induced damage. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Hymenobacter sp. DG25B, a novel bacterium with gamma-radiation resistance isolated from soil in South Korea.

A Gram-negative, rod-shaped, non-motile, gamma and UV radiation resistant bacterium Hymenobacter radioresistens DG25B was isolated from a soil sample collected in South Korea. The complete genome sequence of H. radioresistens DG25B consists of one circular chromosome (3,874,646bp). The bacterium was isolated from gamma ray irradiated soil and contains the genomic features of enzymes involved in the nucleotide excision repair (NER) pathway that protect the damaged DNA. The genome also contains other genes involved in the efficient removal of double-strand breaks (DSB) caused by the ionizing radiations. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Hymenobacter sp. strain PAMC26554, an ionizing radiation-resistant bacterium isolated from an Antarctic lichen.

A Gram-negative, rod-shaped, red-pink in color, and UV radiation-resistant bacterium Hymenobacter sp. strain PAMC26554 was isolated from Usnea sp., an Antarctic lichen, and belongs to the class of Cytophagia and the phylum of Bacteroidetes. The complete genome of Hymenobacter sp. PAMC26554 consists of one chromosome (5,244,843bp) with two plasmids (199,990bp and 6421bp). The genomic sequence indicates that Hymenobacter sp. strain PAMC26554 possesses several genes involved in the nucleotide excision repair pathway that protects damaged DNA. This complete genome information will help us to understand its adaptation and novel survival strategy in the Antarctic extreme cold environment. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Frondihabitans sp. strain PAMC28766, a novel carotenoid-producing and radiation-resistant strain isolated from an Antarctic lichen.

Here, we report the first complete genome sequence of Frondihabitans sp. strain PAMC28766, which was found to consist of three plasmids, one chromosome (4,345,897bp), and a series of genes involved in carotenoid biosynthesis and nucleotide excision repair. An analysis of the Frondihabitans sp. PAMC28766 genome will improve our understanding of the carotenoid biosynthesis pathway. Furthermore, the sequence data will provide novel insight into UV radiation-resistance in extremely cold environments. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of ionizing radiation-resistant Hymenobacter sp. strain PAMC26628 isolated from an Arctic lichen.

Ionizing radiation-resistant Hymenobacter sp. strain PAMC26628 was isolated from Stereocaulon sp., an Arctic lichen. Complete genome sequencing of Hymenobacter sp. PAMC26628 revealed one chromosome (5,277,381bp), one plasmid (89,596bp), and several genes involved in nucleotide excision repair, a DNA damage removal pathway. An analysis of the Hymenobacter sp. PAMC26628 genome will help us understand its evolution and provide novel insight into the adaptations that allow this organism to survive in the extreme cold of the Arctic. Copyright © 2016 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.