April 21, 2020  |  

Long-read sequencing for rare human genetic diseases.

During the past decade, the search for pathogenic mutations in rare human genetic diseases has involved huge efforts to sequence coding regions, or the entire genome, using massively parallel short-read sequencers. However, the approximate current diagnostic rate is <50% using these approaches, and there remain many rare genetic diseases with unknown cause. There may be many reasons for this, but one plausible explanation is that the responsible mutations are in regions of the genome that are difficult to sequence using conventional technologies (e.g., tandem-repeat expansion or complex chromosomal structural aberrations). Despite the drawbacks of high cost and a shortage of standard analytical methods, several studies have analyzed pathogenic changes in the genome using long-read sequencers. The results of these studies provide hope that further application of long-read sequencers to identify the causative mutations in unsolved genetic diseases may expand our understanding of the human genome and diseases. Such approaches may also be applied to molecular diagnosis and therapeutic strategies for patients with genetic diseases in the future.


April 21, 2020  |  

CRISPR/Cas9-targeted enrichment and long-read sequencing of the Fuchs endothelial corneal dystrophy-associated TCF4 triplet repeat.

To demonstrate the utility of an amplification-free long-read sequencing method to characterize the Fuchs endothelial corneal dystrophy (FECD)-associated intronic TCF4 triplet repeat (CTG18.1).We applied an amplification-free method, utilizing the CRISPR/Cas9 system, in combination with PacBio single-molecule real-time (SMRT) long-read sequencing, to study CTG18.1. FECD patient samples displaying a diverse range of CTG18.1 allele lengths and zygosity status (n?=?11) were analyzed. A robust data analysis pipeline was developed to effectively filter, align, and interrogate CTG18.1-specific reads. All results were compared with conventional polymerase chain reaction (PCR)-based fragment analysis.CRISPR-guided SMRT sequencing of CTG18.1 provided accurate genotyping information for all samples and phasing was possible for 18/22 alleles sequenced. Repeat length instability was observed for all expanded (=50 repeats) phased CTG18.1 alleles analyzed. Furthermore, higher levels of repeat instability were associated with increased CTG18.1 allele length (mode length =91 repeats) indicating that expanded alleles behave dynamically.CRISPR-guided SMRT sequencing of CTG18.1 has revealed novel insights into CTG18.1 length instability. Furthermore, this study provides a framework to improve the molecular diagnostic accuracy for CTG18.1-mediated FECD, which we anticipate will become increasingly important as gene-directed therapies are developed for this common age-related and sight threatening disease.


April 21, 2020  |  

Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs Endothelial Corneal Dystrophy.

Amplification of a CAG trinucleotide motif (CTG18.1) within the TCF4 gene has been strongly associated with Fuchs Endothelial Corneal Dystrophy (FECD). Nevertheless, a small minority of clinically unaffected elderly patients who have expanded CTG18.1 sequences have been identified. To test the hypothesis that the CAG expansions in these patients are protected from FECD because they have interruptions within the CAG repeats, we utilized a combination of an amplification-free, long-read sequencing method and a new target-enrichment sequence analysis tool developed by Pacific Biosciences to interrogate the sequence structure of expanded repeats. The sequencing was successful in identifying a previously described interruption within an unexpanded allele and provided sequence data on expanded alleles greater than 2000 bases in length. The data revealed considerable heterogeneity in the size distribution of expanded repeats within each patient. Detailed analysis of the long sequence reads did not reveal any instances of interruptions to the expanded CAG repeats, but did reveal novel variants within the AGG repeats that flank the CAG repeats in two of the five samples from clinically unaffected patients with expansions. This first examination of the sequence structure of CAG repeats in CTG18.1 suggests that factors other than interruptions to the repeat structure account for the absence of disease in some elderly patients with repeat expansions in the TCF4 gene.


April 21, 2020  |  

Long-Read Sequencing Emerging in Medical Genetics

The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for identification of structural variants, sequencing repetitive regions, phasing alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the currently prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.