June 1, 2021  |  

Targeted SMRT Sequencing and phasing using Roche NimbleGen’s SeqCap EZ enrichment

As a cost-effective alternative to whole genome human sequencing, targeted sequencing of specific regions, such as exomes or panels of relevant genes, has become increasingly common. These methods typically include direct PCR amplification of the genomic DNA of interest, or the capture of these targets via probe-based hybridization. Commonly, these approaches are designed to amplify or capture exonic regions and thereby result in amplicons or fragments that are a few hundred base pairs in length, a length that is well-addressed with short-read sequencing technologies. These approaches typically provide very good coverage and can identify SNPs in the targeted region, but are unable to haplotype these variants. Here we describe a targeted sequencing workflow that combines Roche NimbleGen’s SeqCap EZ enrichment technology with Pacific Biosciences’ SMRT Sequencing to provide a more comprehensive view of variants and haplotype information over multi-kilobase regions. While the SeqCap EZ technology is typically used to capture 200 bp fragments, we demonstrate that 6 kb fragments can also be utilized to enrich for long fragments that extend beyond the targeted capture site and well into (and often across) the flanking intronic regions. When combined with the long reads of SMRT Sequencing, multi-kilobase regions of the human genome can be phased and variants detected in exons, introns and intergenic regions.


June 1, 2021  |  

Targeted sequencing of genes from soybean using NimbleGen SeqCap EZ and PacBio SMRT Sequencing

Full-length gene capture solutions offer opportunities to screen and characterize structural variations and genetic diversity to understand key traits in plants and animals. Through a combined Roche NimbleGen probe capture and SMRT Sequencing strategy, we demonstrate the capability to resolve complex gene structures often observed in plant defense and developmental genes spanning multiple kilobases. The custom panel includes members of the WRKY plant-defense-signaling family, members of the NB-LRR disease-resistance family, and developmental genes important for flowering. The presence of repetitive structures and low-complexity regions makes short-read sequencing of these genes difficult, yet this approach allows researchers to obtain complete sequences for unambiguous resolution of gene models. This strategy has been applied to genomic DNA samples from soybean coupled with barcoding for multiplexing.


June 1, 2021  |  

Application specific barcoding strategies for SMRT Sequencing

Over the last few years, several advances were implemented in the PacBio RS II System to maximize throughput and efficiency while reducing the cost per sample. The number of useable bases per SMRT Cell now exceeds 1 Gb with the latest P6-C4 chemistry and 6-hour movies. For applications such as microbial sequencing, targeted sequencing, Iso-Seq (full-length isoform sequencing) and Nimblegen’s target enrichment method, current SMRT Cell yields could be an excess relative to project requirements. To this end, barcoding is a viable option for multiplexing samples. For microbial sequencing, multiplexing can be accomplished by tagging sheared genomic DNA during library construction with modified SMRTbell adapters. We studied the performance of 2- to 8-plex microbial sequencing. For full-length amplicon sequencing such as HLA typing, amplicons as large as 5 kb may be barcoded during amplification using barcoded locus-specific primers. Alternatively, amplicons may be barcoded during SMRTbell library construction using barcoded SMRTbell adapters. The preferred barcoding strategy depends on the user’s existing workflow and flexibility to changing and/or updating existing workflows. Using barcoded adapters, five Class I and II genes (3.3 – 5.8 kb) x 96 patients can be multiplexed and typed. For Iso-Seq full-length cDNA sequencing, barcodes are incorporated during 1st-strand synthesis and are enabled by tailing the oligo-dT primer with any PacBio published 16-bp barcode sequences. RNA samples from 6 maize tissues were multiplexed to generate barcoded cDNA libraries. The NimbleGen SeqCap Target Enrichment method, combined with PacBio’s long-read sequencing, provides comprehensive view of multi-kilobase contiguous regions, both exonic and intronic regions. To make this cost effective, we recommend barcoding samples for pooling prior to target enrichment and capture. Here, we present specific examples of strategies and best practices for multiplexing samples for different applications for SMRT Sequencing. Additionally, we describe recommendations for analyzing barcoded samples.


June 1, 2021  |  

Immune regions are no longer incomprehensible with SMRT Sequencing

The complex immune regions of the genome, including MHC and KIR, contain large copy number variants (CNVs), a high density of genes, hyper-polymorphic gene alleles, and conserved extended haplotypes (CEH) with enormous linkage disequilibrium (LDs). This level of complexity and inherent biases of short-read sequencing make it challenging for extracting immune region haplotype information from reference-reliant, shotgun sequencing and GWAS methods. As NGS based genome and exome sequencing and SNP arrays have become a routine for population studies, numerous efforts are being made for developing software to extract and or impute the immune gene information from these datasets. Despite these efforts, the fine mapping of causal variants of immune genes for their well-documented association with cancer, drug-induced hypersensitivity and immune-related diseases, has been slower than expected. This has in many ways limited our understanding of the mechanisms leading to immune disease. In the present work, we demonstrate the advantages of long reads delivered by SMRT Sequencing for assembling complete haplotypes of MHC and KIR gene clusters, as well as calling correct genotypes of genes comprised within them. All the genotype information is detected at allele- level with full phasing information across SNP-poor regions. Genotypes were called correctly from targeted gene amplicons, haplotypes, as well as from a completely assembled 5 Mb contig of the MHC region from a de novo assembly of whole genome shotgun data. De novo analysis pipeline used in all these approaches allowed for reference-free analysis without imputation, a key for interrogation without prior knowledge about ethnic backgrounds. These methods are thus easily adoptable for previously uncharacterized human or non-human species.


June 1, 2021  |  

Resolving KIR genotypes and haplotypes simultaneously using Single Molecule, Real-Time Sequencing

The killer immunoglobulin-like receptors (KIR) genes belong to the immunoglobulin superfamily and are widely studied due to the critical role they play in coordinating the innate immune response to infection and disease. Highly accurate, contiguous, long reads, like those generated by SMRT Sequencing, when combined with target-enrichment protocols, provide a straightforward strategy for generating complete de novo assembled KIR haplotypes. We have explored two different methods to capture the KIR region; one applying the use of fosmid clones and one using Nimblegen capture.


June 1, 2021  |  

Candidate gene screening using long-read sequencing

We have developed several candidate gene screening applications for both Neuromuscular and Neurological disorders. The power behind these applications comes from the use of long-read sequencing. It allows us to access previously unresolvable and even unsequencable genomic regions. SMRT Sequencing offers uniform coverage, a lack of sequence context bias, and very high accuracy. In addition, it is also possible to directly detect epigenetic signatures and characterize full-length gene transcripts through assembly-free isoform sequencing. In addition to calling the bases, SMRT Sequencing uses the kinetic information from each nucleotide to distinguish between modified and native bases.


June 1, 2021  |  

Application-specific barcoding strategies for SMRT Sequencing

The increased sequencing throughput creates a need for multiplexing for several applications. We are here detailing different barcoding strategies for microbial sequencing, targeted sequencing, Iso-Seq full-length isoform sequencing, and Roche NimbleGen’s target enrichment method.


June 1, 2021  |  

Highly contiguous de novo human genome assembly and long-range haplotype phasing using SMRT Sequencing

The long reads, random error, and unbiased sampling of SMRT Sequencing enables high quality, de novo assembly of the human genome. PacBio long reads are capable of resolving genomic variations at all size scales, including SNPs, insertions, deletions, inversions, translocations, and repeat expansions, all of which are both important in understanding the genetic basis for human disease, and difficult to access via other technologies. In demonstration of this, we report a new high-quality, diploid-aware de novo assembly of Craig Venter’s well-studied genome.


June 1, 2021  |  

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual antibody repertoire variability and disease. To remedy this, we are taking a multi-faceted approach to improving existing genomic resources in the human IGH region. First, from whole-genome and fosmid-based datasets, we are building the largest and most ethnically diverse set of IGH reference assemblies to date, by employing PacBio long-read sequencing combined with novel algorithms for phased haplotype assembly. In total, our effort will result in the characterization of >15 phased haplotypes from individuals of Asian, African, and European descent, to be used as a representative reference set by the genomics and immunogenetics community. Second, we are utilizing this more comprehensive sequence catalogue to inform the design and analysis of novel targeted IGH genotyping assays. Standard targeted DNA enrichment methods (e.g., exome capture) are currently optimized for the capture of only very short (100’s of bp) DNA segments. Our platform uses a modified bench protocol to pair existing capture-array technologies with the enrichment of longer fragments of DNA, enabling the use of PacBio sequencing of DNA segments up to 7 Kb. This substantial increase in contiguity disambiguates many of the complex repeated structures inherent to the locus, while yielding the base pair fidelity required to call SNVs. Together these resources will establish a stronger framework for further characterizing IGH genetic diversity and facilitate IGH genomic profiling in the clinical and research settings, which will be key to fully understanding the role of IGH germline variation in antibody repertoire development and disease.


June 1, 2021  |  

Target enrichment using a neurology panel for 12 barcoded genomic DNA samples on the PacBio SMRT Sequencing platform

Target enrichment is a powerful tool for studies involved in understanding polymorphic SNPs with phasing, tandem repeats, and structural variations. With increasing availability of reference genomes, researchers can easily design a cost-effective targeted investigation with custom probes specific to regions of interest. Using PacBio long-read technology in conjunction with probe capture, we were able to sequence multi-kilobase enriched regions to fully investigate intronic and exonic regions, distinguish haplotypes, and characterize structural variations. Furthermore, we demonstrate this approach is advantageous for studying complex genomic regions previously inaccessible through other sequencing platforms. In the present work, 12 barcoded genomic DNA (gDNA) samples were sheared to 6 kb for target enrichment analysis using the Neurology panel provided by Roche NimbleGen. Probe-captured DNA was used to make SMRTbell libraries for SMRT Sequencing on the PacBio RS II. Our results demonstrate the ability to multiplex 12 samples and achieve 1300x enrichment of targeted regions. In addition, we achieved an even representation of on-target rate of 70% across the 12 barcoded genomic DNA samples.


June 1, 2021  |  

Screening and characterization of causative structural variants for bipolar disorder in a significantly linked chromosomal region onXq24-q27 in an extended pedigree from a genetic isolate

Bipolar disorder (BD) is a phenotypically and genetically complex and debilitating neurological disorder that affects 1% of the worldwide population. There is compelling evidence from family, twin and adoption studies supporting the involvement of a genetic predisposition in BD with estimated heritability up to ~ 80%. The risk in first-degree relatives is ten times higher than in the general population. Linkage and association studies have implicated multiple putative chromosomal loci for BP susceptibility, however no disease genes have been identified to date.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.