X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, February 26, 2020

Genome sequencing of microbial genomes using Single Molecule Real-time sequencing (SMRT) technology.

In the last year, high-throughput sequencing technologies have progressed from proof-of-concept to production quality. Although each technology is able to produce vast quantities of sequence information, in every case the underlying chemistry limits reads to very short lengths. We present a examining de novo assembly comparison with bacterial genome assembly varying genome size (from 3.1Mb to 7.6Mb) and different G+C contents (from 43% to 71%), respectively. We analyzed Solexa reads, 454 reads and Pacbio RS reads from Streptomyces sp. (Genome size, 7.6 Mb; G+C content, 71%), Psychrobacter sp. (Genome size, 3.5 Mb; G+C content, 43%), Salinibacterium sp. (Genome size, 3.1…

Read More »

Wednesday, February 26, 2020

Complete microbial genomes, epigenomes, and transcriptomes using long-read PacBio Sequencing.

For comprehensive metabolic reconstructions and a resulting understanding of the pathways leading to natural products, it is desirable to obtain complete information about the genetic blueprint of the organisms used. Traditional Sanger and next-generation, short-read sequencing technologies have shortcomings with respect to read lengths and DNA-sequence context bias, leading to fragmented and incomplete genome information. The development of long-read, single molecule, real-time (SMRT) DNA sequencing from Pacific Biosciences, with >10,000 bp average read lengths and a lack of sequence context bias, now allows for the generation of complete genomes in a fully automated workflow. In addition to the genome sequence,…

Read More »

Sunday, September 22, 2019

An environmental bacterial taxon with a large and distinct metabolic repertoire.

Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such ‘talented’ producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus ‘Entotheonella’ with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei.…

Read More »

Sunday, September 22, 2019

Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II’s sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing,…

Read More »

Sunday, September 22, 2019

Construction of Pará rubber tree genome and multi-transcriptome database accelerates rubber researches.

Natural rubber is an economically important material. Currently the Pará rubber tree, Hevea brasiliensis is the main commercial source. Little is known about rubber biosynthesis at the molecular level. Next-generation sequencing (NGS) technologies brought draft genomes of three rubber cultivars and a variety of RNA sequencing (RNA-seq) data. However, no current genome or transcriptome databases (DB) are organized by gene.A gene-oriented database is a valuable support for rubber research. Based on our original draft genome sequence of H. brasiliensis RRIM600, we constructed a rubber tree genome and transcriptome DB. Our DB provides genome information including gene functional annotations and multi-transcriptome…

Read More »

Sunday, September 22, 2019

Capturing natural product biosynthetic pathways from uncultivated symbiotic bacteria of marine sponges through metagenome mining: a mini-review

Symbiotic bacteria associated with marine sponges have frequently been proposed as the true producer of many bioactive natural products with potent anticancer activities. However, the majority of these complex symbiotic bacteria cannot be cultivated under laboratory conditions, hampering efforts to access and develop their potent compounds for therapeutic applications. Metagenome mining is a powerful cultivation-independent tool that can be used to search for new natural product biosynthetic pathways from highly complex bacterial consortia. Some notable examples of natural products, in which their biosynthetic pathways have been cloned by metagenome mining are onnamide A, psymberin, polytheonamides, calyculin, and misakinolide A. Subsequent…

Read More »

Sunday, September 22, 2019

A workflow for studying specialized metabolism in nonmodel eukaryotic organisms

Eukaryotes contain a diverse tapestry of specialized metabolites, many of which are of significant pharmaceutical and industrial importance to humans. Nevertheless, exploration of specialized metabolic pathways underlying specific chemical traits in nonmodel eukaryotic organisms has been technically challenging and historically lagged behind that of the bacterial systems. Recent advances in genomics, metabolomics, phylogenomics, and synthetic biology now enable a new workflow for interrogating unknown specialized metabolic systems in nonmodel eukaryotic hosts with greater efficiency and mechanistic depth. This chapter delineates such workflow by providing a collection of state-of-the-art approaches and tools, ranging from multiomics-guided candidate gene identification to in vitro…

Read More »

Sunday, September 22, 2019

Interpreting microbial biosynthesis in the genomic age: Biological and practical considerations.

Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and…

Read More »

Sunday, September 22, 2019

Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution…

Read More »

Sunday, September 22, 2019

Complete genome sequence of Geobacillus thermodenitrificans T12, a potential host for biotechnological applications.

In attempt to obtain a thermophilic host for the conversion of lignocellulose derived substrates into lactic acid, Geobacillus thermodenitrificans T12 was isolated from a compost heap. It was selected from over 500 isolates as a genetically tractable hemicellulolytic lactic acid producer, requiring little nutrients. The strain is able to ferment glucose and xylose simultaneously and can produce lactic acid from xylan, making it a potential host for biotechnological applications. The genome of strain T12 consists of a 3.64 Mb chromosome and two plasmids of 59 and 56 kb. It has a total of 3.676 genes with an average genomic GC content of…

Read More »

Sunday, September 22, 2019

Identification of the biosynthetic pathway for the antibiotic bicyclomycin.

Diketopiperazines (DKPs) make up a large group of natural products with diverse structures and biological activities. Bicyclomycin is a broad-spectrum DKP antibiotic with unique structure and function: it contains a highly oxidized bicyclic [4.2.2] ring and is the only known selective inhibitor of the bacterial transcription termination factor, Rho. Here, we identify the biosynthetic gene cluster for bicyclomycin containing six iron-dependent oxidases. We demonstrate that the DKP core is made by a tRNA-dependent cyclodipeptide synthase, and hydroxylations on two unactivated sp(3) carbons are performed by two mononuclear iron, a-ketoglutarate-dependent hydroxylases. Using bioinformatics, we also identify a homologous gene cluster prevalent…

Read More »

Sunday, September 22, 2019

Mode of action and heterologous expression of the natural product antibiotic vancoresmycin.

Antibiotics that interfere with the bacterial cytoplasmic membrane have long-term potential for the treatment of infectious diseases as this mode of action is anticipated to result in low resistance frequency. Vancoresmycin is an understudied natural product antibiotic consisting of a terminal tetramic acid moiety fused to a linear, highly oxygenated, stereochemically complex polyketide chain. Vancoresmycin shows minimum inhibitory concentrations (MICs) from 0.125 to 2 µg/mL against a range of clinically relevant, antibiotic-resistant Gram-positive bacteria. Through a comprehensive mode-of-action study, utilizing Bacillus subtilis reporter strains, DiSC3(5) depolarization assays, and fluorescence microscopy, we have shown that vancoresmycin selectively targets the cytoplasmic membrane…

Read More »

Sunday, September 22, 2019

Identification of the streptothricin and tunicamycin biosynthetic gene clusters by genome mining in Streptomyces sp. strain fd1-xmd.

The genus Streptomyces have been highly regarded for their important source of natural products. Combined with the technology of genome sequencing and mining, we could identify the active ingredients from fermentation broth quickly. Here, we report on Streptomyces sp. strain fd1-xmd, which was isolated from a soil sample collected in Shanghai. Interestingly, the fermentation broth derived from this strain demonstrated broad-spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and eukaryotes. To identify the antimicrobial substances and their biosynthetic gene clusters, we sequenced the fd1-xmd strain and obtained a genome 7,929,999 bp in length. The average GC content of the chromosome was…

Read More »

Sunday, September 22, 2019

In silico exploration of Red Sea Bacillus genomes for natural product biosynthetic gene clusters.

The increasing spectrum of multidrug-resistant bacteria is a major global public health concern, necessitating discovery of novel antimicrobial agents. Here, members of the genus Bacillus are investigated as a potentially attractive source of novel antibiotics due to their broad spectrum of antimicrobial activities. We specifically focus on a computational analysis of the distinctive biosynthetic potential of Bacillus paralicheniformis strains isolated from the Red Sea, an ecosystem exposed to adverse, highly saline and hot conditions.We report the complete circular and annotated genomes of two Red Sea strains, B. paralicheniformis Bac48 isolated from mangrove mud and B. paralicheniformis Bac84 isolated from microbial…

Read More »

1 2 3 4 7

Subscribe for blog updates:

Archives