Menu
April 21, 2020  |  

Efomycins K and L From a Termite-Associated Streptomyces sp. M56 and Their Putative Biosynthetic Origin.

Two new elaiophylin derivatives, efomycins K (1) and L (2), and five known elaiophylin derivatives (3-7) were isolated from the termite-associated Streptomyces sp. M56. The structures were determined by 1D and 2D NMR and HR-ESIMS analyses and comparative CD spectroscopy. The putative gene cluster responsible for the production of the elaiophylin and efomycin derivatives was identified based on significant homology to related clusters. Phylogenetic analysis of gene cluster domains was used to provide a biosynthetic rational for these new derivatives and to demonstrate how a single biosynthetic pathway can produce diverse structures.


April 21, 2020  |  

Comparative Genomics of Marine Sponge-Derived Streptomyces spp. Isolates SM17 and SM18 With Their Closest Terrestrial Relatives Provides Novel Insights Into Environmental Niche Adaptations and Secondary Metabolite Biosynthesis Potential.

The emergence of antibiotic resistant microorganisms has led to an increased need for the discovery and development of novel antimicrobial compounds. Frequent rediscovery of the same natural products (NPs) continues to decrease the likelihood of the discovery of new compounds from soil bacteria. Thus, efforts have shifted toward investigating microorganisms and their secondary metabolite biosynthesis potential, from diverse niche environments, such as those isolated from marine sponges. Here we investigated at the genomic level two Streptomyces spp. strains, namely SM17 and SM18, isolated from the marine sponge Haliclona simulans, with previously reported antimicrobial activity against clinically relevant pathogens; using single molecule real-time (SMRT) sequencing. We performed a series of comparative genomic analyses on SM17 and SM18 with their closest terrestrial relatives, namely S. albus J1074 and S. pratensis ATCC 33331 respectively; in an effort to provide further insights into potential environmental niche adaptations (ENAs) of marine sponge-associated Streptomyces, and on how these adaptations might be linked to their secondary metabolite biosynthesis potential. Prediction of secondary metabolite biosynthetic gene clusters (smBGCs) indicated that, even though the marine isolates are closely related to their terrestrial counterparts at a genomic level; they potentially produce different compounds. SM17 and SM18 displayed a better ability to grow in high salinity medium when compared to their terrestrial counterparts, and further analysis of their genomes indicated that they possess a pool of 29 potential ENA genes that are absent in S. albus J1074 and S. pratensis ATCC 33331. This ENA gene pool included functional categories of genes that are likely to be related to niche adaptations and which could be grouped based on potential biological functions such as osmotic stress, defense; transcriptional regulation; symbiotic interactions; antimicrobial compound production and resistance; ABC transporters; together with horizontal gene transfer and defense-related features.


April 21, 2020  |  

Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria.

The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative “megaplasmid,” multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a total of 104 antiSMASH-predicted putative biosynthetic gene clusters (BGCs) for secondary metabolites with high novelty and diversity were identified in nine Ktedonobacteria genomes. Our investigation of domain composition and organization of the non-ribosomal peptide synthetase and polyketide synthase BGCs further supports the concept that class Ktedonobacteria may produce compounds structurally different from known natural products. Furthermore, screening of bioactive compounds from representative Ktedonobacteria strains resulted in the identification of broad antimicrobial activities against both Gram-positive and Gram-negative tested bacterial strains. Based on these findings, we propose the ancient, ubiquitous, and spore-forming Ktedonobacteria as a versatile and promising microbial resource for natural product discovery.


September 22, 2019  |  

An environmental bacterial taxon with a large and distinct metabolic repertoire.

Cultivated bacteria such as actinomycetes are a highly useful source of biomedically important natural products. However, such ‘talented’ producers represent only a minute fraction of the entire, mostly uncultivated, prokaryotic diversity. The uncultured majority is generally perceived as a large, untapped resource of new drug candidates, but so far it is unknown whether taxa containing talented bacteria indeed exist. Here we report the single-cell- and metagenomics-based discovery of such producers. Two phylotypes of the candidate genus ‘Entotheonella’ with genomes of greater than 9 megabases and multiple, distinct biosynthetic gene clusters co-inhabit the chemically and microbially rich marine sponge Theonella swinhoei. Almost all bioactive polyketides and peptides known from this animal were attributed to a single phylotype. ‘Entotheonella’ spp. are widely distributed in sponges and belong to an environmental taxon proposed here as candidate phylum ‘Tectomicrobia’. The pronounced bioactivities and chemical uniqueness of ‘Entotheonella’ compounds provide significant opportunities for ecological studies and drug discovery.


September 22, 2019  |  

Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II’s sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.


September 22, 2019  |  

Construction of Pará rubber tree genome and multi-transcriptome database accelerates rubber researches.

Natural rubber is an economically important material. Currently the Pará rubber tree, Hevea brasiliensis is the main commercial source. Little is known about rubber biosynthesis at the molecular level. Next-generation sequencing (NGS) technologies brought draft genomes of three rubber cultivars and a variety of RNA sequencing (RNA-seq) data. However, no current genome or transcriptome databases (DB) are organized by gene.A gene-oriented database is a valuable support for rubber research. Based on our original draft genome sequence of H. brasiliensis RRIM600, we constructed a rubber tree genome and transcriptome DB. Our DB provides genome information including gene functional annotations and multi-transcriptome data of RNA-seq, full-length cDNAs including PacBio Isoform sequencing (Iso-Seq), ESTs and genome wide transcription start sites (TSSs) derived from CAGE technology. Using our original and publically available RNA-seq data, we calculated co-expressed genes for identifying functionally related gene sets and/or genes regulated by the same transcription factor (TF). Users can access multi-transcriptome data through both a gene-oriented web page and a genome browser. For the gene searching system, we provide keyword search, sequence homology search and gene expression search; users can also select their expression threshold easily.The rubber genome and transcriptome DB provides rubber tree genome sequence and multi-transcriptomics data. This DB is useful for comprehensive understanding of the rubber transcriptome. This will assist both industrial and academic researchers for rubber and economically important close relatives such as R. communis, M. esculenta and J. curcas. The Rubber Transcriptome DB release 2017.03 is accessible at http://matsui-lab.riken.jp/rubber/ .


September 22, 2019  |  

Capturing natural product biosynthetic pathways from uncultivated symbiotic bacteria of marine sponges through metagenome mining: a mini-review

Symbiotic bacteria associated with marine sponges have frequently been proposed as the true producer of many bioactive natural products with potent anticancer activities. However, the majority of these complex symbiotic bacteria cannot be cultivated under laboratory conditions, hampering efforts to access and develop their potent compounds for therapeutic applications. Metagenome mining is a powerful cultivation-independent tool that can be used to search for new natural product biosynthetic pathways from highly complex bacterial consortia. Some notable examples of natural products, in which their biosynthetic pathways have been cloned by metagenome mining are onnamide A, psymberin, polytheonamides, calyculin, and misakinolide A. Subsequent expression of the pathways in easily culturable bacteria, such as Escherichia coli, could lead to the sustainable production of rare promising natural products. This review discusses principles of metagenome mining developed to gain access to natural product biosynthetic pathways from uncultured symbiotic bacteria of marine sponges. This includes detecting biosynthetic genes in sponge metagenome, creating large metagenomic library, rapid screening of metagenomic library, and clone sequencing. For many natural products made by modular polyketide synthases (PKSs) and hybrids with non-ribosomal peptide synthetases (NRPSs), their biosynthetic pathways as well as structures of final products can be predicted with high accuracy through bioinformatic analysis and sometimes combined with functional proof. Further metagenome sequencing integrated with single-cell analysis and chemical studies could provide insights into the remarkable biosynthetic capacity of uncultivated bacterial symbionts, thereby facilitating the discovery and sustainable production of a wide diversity of sponge-derived complex compounds.


September 22, 2019  |  

A workflow for studying specialized metabolism in nonmodel eukaryotic organisms

Eukaryotes contain a diverse tapestry of specialized metabolites, many of which are of significant pharmaceutical and industrial importance to humans. Nevertheless, exploration of specialized metabolic pathways underlying specific chemical traits in nonmodel eukaryotic organisms has been technically challenging and historically lagged behind that of the bacterial systems. Recent advances in genomics, metabolomics, phylogenomics, and synthetic biology now enable a new workflow for interrogating unknown specialized metabolic systems in nonmodel eukaryotic hosts with greater efficiency and mechanistic depth. This chapter delineates such workflow by providing a collection of state-of-the-art approaches and tools, ranging from multiomics-guided candidate gene identification to in vitro and in vivo functional and structural characterization of specialized metabolic enzymes. As already demonstrated by several recent studies, this new workflow opens up a gateway into the largely untapped world of natural product biochemistry in eukaryotes. © 2016 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Interpreting microbial biosynthesis in the genomic age: Biological and practical considerations.

Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.


September 22, 2019  |  

Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.


September 22, 2019  |  

Complete genome sequence of Geobacillus thermodenitrificans T12, a potential host for biotechnological applications.

In attempt to obtain a thermophilic host for the conversion of lignocellulose derived substrates into lactic acid, Geobacillus thermodenitrificans T12 was isolated from a compost heap. It was selected from over 500 isolates as a genetically tractable hemicellulolytic lactic acid producer, requiring little nutrients. The strain is able to ferment glucose and xylose simultaneously and can produce lactic acid from xylan, making it a potential host for biotechnological applications. The genome of strain T12 consists of a 3.64 Mb chromosome and two plasmids of 59 and 56 kb. It has a total of 3.676 genes with an average genomic GC content of 48.7%. The T12 genome encodes a denitrification pathway, allowing for anaerobic respiration. The identity and localization of the responsible genes are similar to those of the denitrification pathways found in strain NG80-2. The hemicellulose utilization (HUS) locus was identified based on sequence homology against G. stearothermophilus T-6. It appeared that T12 has all the genes that are present in strain T-6 except for the arabinan degradation cluster. Instead, the HUS locus of strain T12 contains genes for both an inositol and a pectate degradation pathway. Strain T12 has complete pathways for the synthesis of purine and pyrimidine, all 20 amino acids and several vitamins except D-biotin. The host-defense systems present comprise a Type II and a Type III restriction-modification system, as well as a CRISPR-Cas Type II system. It is concluded that G. thermodenitrificans T12 is a potentially interesting candidate for industrial applications.


September 22, 2019  |  

Identification of the biosynthetic pathway for the antibiotic bicyclomycin.

Diketopiperazines (DKPs) make up a large group of natural products with diverse structures and biological activities. Bicyclomycin is a broad-spectrum DKP antibiotic with unique structure and function: it contains a highly oxidized bicyclic [4.2.2] ring and is the only known selective inhibitor of the bacterial transcription termination factor, Rho. Here, we identify the biosynthetic gene cluster for bicyclomycin containing six iron-dependent oxidases. We demonstrate that the DKP core is made by a tRNA-dependent cyclodipeptide synthase, and hydroxylations on two unactivated sp(3) carbons are performed by two mononuclear iron, a-ketoglutarate-dependent hydroxylases. Using bioinformatics, we also identify a homologous gene cluster prevalent in a human pathogen Pseudomonas aeruginosa. We detect bicyclomycin by overexpressing this gene cluster and establish P. aeruginosa as a new producer of bicyclomycin. Our work uncovers the biosynthetic pathway for bicyclomycin and sheds light on the intriguing oxidation chemistry that converts a simple DKP into a powerful antibiotic.


September 22, 2019  |  

Mode of action and heterologous expression of the natural product antibiotic vancoresmycin.

Antibiotics that interfere with the bacterial cytoplasmic membrane have long-term potential for the treatment of infectious diseases as this mode of action is anticipated to result in low resistance frequency. Vancoresmycin is an understudied natural product antibiotic consisting of a terminal tetramic acid moiety fused to a linear, highly oxygenated, stereochemically complex polyketide chain. Vancoresmycin shows minimum inhibitory concentrations (MICs) from 0.125 to 2 µg/mL against a range of clinically relevant, antibiotic-resistant Gram-positive bacteria. Through a comprehensive mode-of-action study, utilizing Bacillus subtilis reporter strains, DiSC3(5) depolarization assays, and fluorescence microscopy, we have shown that vancoresmycin selectively targets the cytoplasmic membrane of Gram-positive bacteria via a non-pore-forming, concentration-dependent depolarization mechanism. Whole genome sequencing of the producing strain allowed identification of the 141 kbp gene cluster encoding for vancoresmycin biosynthesis and a preliminary model for its biosynthesis. The size and complex structure of vancoresmycin could confound attempts to generate synthetic analogues. To overcome this problem and facilitate future studies, we identified, cloned, and expressed the 141 kbp biosynthetic gene cluster in Streptomyces coelicolor M1152. Elucidation of the mode-of-action of vancoresmycin, together with the heterologous expression system, will greatly facilitate further studies of this and related molecules.


September 22, 2019  |  

Identification of the streptothricin and tunicamycin biosynthetic gene clusters by genome mining in Streptomyces sp. strain fd1-xmd.

The genus Streptomyces have been highly regarded for their important source of natural products. Combined with the technology of genome sequencing and mining, we could identify the active ingredients from fermentation broth quickly. Here, we report on Streptomyces sp. strain fd1-xmd, which was isolated from a soil sample collected in Shanghai. Interestingly, the fermentation broth derived from this strain demonstrated broad-spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and eukaryotes. To identify the antimicrobial substances and their biosynthetic gene clusters, we sequenced the fd1-xmd strain and obtained a genome 7,929,999 bp in length. The average GC content of the chromosome was 72.5 mol%. Knockout experiments demonstrated that out of eight biosynthetic gene clusters we could identify, two are responsible for the biosynthesis of the antibiotics streptothricin (ST) and tunicamycin (TM). The ST biosynthetic gene cluster from fd1-xmd was verified via successful heterologous expression in Streptomyces coelicolor M1146. ST production had a yield of up to 0.5 g/L after the optimization of culture conditions. This study describes a novel producer of ST and TM and outlines the complete process undertaken for Streptomyces sp. strain fd1-xmd genome mining.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.