July 19, 2019  |  

Comprehensive mutagenesis of the fimS promoter regulatory switch reveals novel regulation of type 1 pili in uropathogenic Escherichia coli.

Type 1 pili (T1P) are major virulence factors for uropathogenic Escherichia coli (UPEC), which cause both acute and recurrent urinary tract infections. T1P expression therefore is of direct relevance for disease. T1P are phase variable (both piliated and nonpiliated bacteria exist in a clonal population) and are controlled by an invertible DNA switch (fimS), which contains the promoter for the fim operon encoding T1P. Inversion of fimS is stochastic but may be biased by environmental conditions and other signals that ultimately converge at fimS itself. Previous studies of fimS sequences important for T1P phase variation have focused on laboratory-adapted E. coli strains and have been limited in the number of mutations or by alteration of the fimS genomic context. We surmounted these limitations by using saturating genomic mutagenesis of fimS coupled with accurate sequencing to detect both mutations and phase status simultaneously. In addition to the sequences known to be important for biasing fimS inversion, our method also identifies a previously unknown pair of 5′ UTR inverted repeats that act by altering the relative fimA levels to control phase variation. Thus we have uncovered an additional layer of T1P regulation potentially impacting virulence and the coordinate expression of multiple pilus systems.

July 19, 2019  |  

High frequency of mitochondrial DNA mutations in HIV-infected treatment-experienced individuals.

We recently observed a decrease in deoxyribonucleotide (dNTP) pools in HIV-infected individuals on antiretroviral therapy (ART). Alterations in dNTPs result in mutations in mitochondrial DNA (mtDNA) in cell culture and animal models. Therefore, we investigated whether ART is associated with mitochondrial genome sequence variation in peripheral blood mononuclear cells (PBMCs) of HIV-infected treatment-experienced individuals.In this substudy of a case-control study, 71 participants were included: 22 ‘cases’, who were HIV-infected treatment-experienced patients with mitochondrial toxicity, 25 HIV-infected treatment-experienced patients without mitochondrial toxicity, and 24 HIV-uninfected controls. Total DNA was extracted from PBMCs and purified polymerase chain reaction (PCR) products were subjected to third-generation sequencing using the PacBio Single Molecule Real-Time (SMRT) sequencing technology. The sequences were aligned against the revised Cambridge reference sequence for human mitochondrial DNA (NC_012920.1) for detection of variants.We identified a total of 123 novel variants, 39 of them in the coding region. HIV-infected treatment-experienced patients with and without toxicity had significantly higher average numbers of mitochondrial variants per participant than HIV-uninfected controls. We observed a higher burden of mtDNA large-scale deletions in HIV-infected treatment-experienced patients with toxicity compared with HIV-uninfected controls (P = 0.02). The frequency of mtDNA molecules containing a common deletion (mt.d4977) was higher in HIV-infected treatment-experienced patients with toxicity compared with HIV-uninfected controls (P = 0.06). There was no statistically significant difference in mtDNA variants between HIV-infected treatment-experienced patients with and without toxicity.The frequency of mtDNA variants (mutations and large-scale deletions) was higher in HIV-infected treatment-experienced patients with or without ART-induced toxicity than in uninfected controls.© 2016 The Authors. HIV Medicine published by John Wiley & Sons Ltd on behalf of British HIV Association.

July 19, 2019  |  

High throughput random mutagenesis and Single Molecule Real Time Sequencing of the muscle nicotinic acetylcholine receptor.

High throughput random mutagenesis is a powerful tool to identify which residues are important for the function of a protein, and gain insight into its structure-function relation. The human muscle nicotinic acetylcholine receptor was used to test whether this technique previously used for monomeric receptors can be applied to a pentameric ligand-gated ion channel. A mutant library for the a1 subunit of the channel was generated by error-prone PCR, and full length sequences of all 2816 mutants were retrieved using single molecule real time sequencing. Each a1 mutant was co-transfected with wildtype ß1, d, and e subunits, and the channel function characterized by an ion flux assay. To test whether the strategy could map the structure-function relation of this receptor, we attempted to identify mutations that conferred resistance to competitive antagonists. Mutant hits were defined as receptors that responded to the nicotinic agonist epibatidine, but were not inhibited by either a-bungarotoxin or tubocurarine. Eight a1 subunit mutant hits were identified, six of which contained mutations at position Y233 or V275 in the transmembrane domain. Three single point mutations (Y233N, Y233H, and V275M) were studied further, and found to enhance the potencies of five channel agonists tested. This suggests that the mutations made the channel resistant to the antagonists, not by impairing antagonist binding, but rather by producing a gain-of-function phenotype, e.g. increased agonist sensitivity. Our data show that random high throughput mutagenesis is applicable to multimeric proteins to discover novel functional mutants, and outlines the benefits of using single molecule real time sequencing with regards to quality control of the mutant library as well as downstream mutant data interpretation.

July 7, 2019  |  

Whole-genome sequence of an evolved Clostridium pasteurianum strain reveals Spo0A deficiency responsible for increased butanol production and superior growth.

Biodiesel production results in crude glycerol waste from the transesterification of fatty acids (10 % w/w). The solventogenic Clostridium pasteurianum, an anaerobic Firmicute, can produce butanol from glycerol as the sole carbon source. Coupling butanol fermentation with biodiesel production can improve the overall economic viability of biofuels. However, crude glycerol contains growth-inhibiting byproducts which reduce feedstock consumption and solvent production.To obtain a strain with improved characteristics, a random mutagenesis and directed evolution selection technique was used. A wild-type C. pasteurianum (ATCC 6013) culture was chemically mutagenized, and the resulting population underwent 10 days of selection in increasing concentrations of crude glycerol (80-150 g/L). The best-performing mutant (M150B) showed a 91 % increase in butanol production in 100 g/L crude glycerol compared to the wild-type strain, as well as increased growth rate, a higher final optical density, and less production of the side product PDO (1,3-propanediol). Wild-type and M150B strains were sequenced via Single Molecule Real-Time (SMRT) sequencing. Mutations introduced to the M150B genome were identified by sequence comparison to the wild-type and published closed sequences. A major mutation (a deletion) in the gene of the master transcriptional regulator of sporulation, Spo0A, was identified. A spo0A single gene knockout strain was constructed using a double–crossover genome-editing method. The Spo0A-deficient strain showed similar tolerance to crude glycerol as the evolved mutant strain M150B. Methylation patterns on genomic DNA identified by SMRT sequencing were used to transform plasmid DNA to overcome the native C. pasteurianum restriction endonuclease.Solvent production in the absence of Spo0A shows C. pasteurianum differs in solvent-production regulation compared to other solventogenic Clostridium. Growth-associated butanol production shows C. pasteurianum to be an attractive option for further engineering as it may prove a better candidate for butanol production through continuous fermentation.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.