Menu
December 20, 2021  |  

Germline mosaicism of a missense variant in KCNC2 in a multiplex family with autism and epilepsy

Currently, protein-coding de novo variants and large copy number variants have been identified as important for ∼30% of individuals with autism. One approach to identify relevant variation in individuals who lack these types of events is by utilizing newer genomic technologies. In this study, highly accurate PacBio HiFi long-read sequencing was applied to a family with autism, treatment-refractory epilepsy, cognitive impairment, and mild dysmorphic features (two affected female full siblings, parents, and one unaffected sibling) with no known clinical variant. From our long-read sequencing data, a de novo missense variant in the KCNC2 gene (encodes Kv3.2 protein) was identified in both affected children. This variant was phased to the paternal chromosome of origin and is likely a germline mosaic. In silico assessment of the variant revealed it was in the top 0.05% of all conserved bases in the genome, and was predicted damaging by Polyphen2, MutationTaster, and SIFT. It was not present in any controls from public genome databases nor in a joint-call set we generated across 49 individuals with publicly available PacBio HiFi data. This specific missense mutation (Val473Ala) has been shown in both an ortholog and paralog of Kv3.2 to accelerate current decay, shift the voltage dependence of activation, and prevent the channel from entering a long-lasting open state. Seven additional missense mutations have been identified in other individuals with neurodevelopmental disorders (p = 1.03 × 10−5). KCNC2 is most highly expressed in the brain; in particular, in the thalamus and is enriched in GABAergic neurons. Long-read sequencing was useful in discovering the relevant variant in this family with autism that had remained a mystery for several years and will potentially have great benefits in the clinic once it is widely available.


June 1, 2021  |  

Screening for causative structural variants in neurological disorders using long-read sequencing

Over the past decades neurological disorders have been extensively studied producing a large number of candidate genomic regions and candidate genes. The SNPs identified in these studies rarely represent the true disease-related functional variants. However, more recently a shift in focus from SNPs to larger structural variants has yielded breakthroughs in our understanding of neurological disorders.Here we have developed candidate gene screening methods that combine enrichment of long DNA fragments with long-read sequencing that is optimized for structural variation discovery. We have also developed a novel, amplification-free enrichment technique using the CRISPR/Cas9 system to target genomic regions.We sequenced gDNA and full-length cDNA extracted from the temporal lobe for two Alzheimer’s patients for 35 GWAS candidate genes. The multi-kilobase long reads allowed for phasing across the genes and detection of a broad range of genomic variants including SNPs to multi-kilobase insertions, deletions and inversions. In the full-length cDNA data we detected differential allelic isoform complexity, novel exons as well as transcript isoforms. By combining the gDNA data with full-length isoform characterization allows to build a more comprehensive view of the underlying biological disease mechanisms in Alzheimer’s disease. Using the novel PCR-free CRISPR-Cas9 enrichment method we screened several genes including the hexanucleotide repeat expansion C9ORF72 that is associated with 40% of familiar ALS cases. This method excludes any PCR bias or errors from an otherwise hard to amplify region as well as preserves the basemodication in a single molecule fashion which allows you to capture mosaicism present in the sample.


June 1, 2021  |  

Amplification-free targeted enrichment and SMRT Sequencing of repeat-expansion genomic regions

Targeted sequencing has proven to be an economical means of obtaining sequence information for one or more defined regions of a larger genome. However, most target enrichment methods are reliant upon some form of amplification. Amplification removes the epigenetic marks present in native DNA, and some genomic regions, such as those with extreme GC content and repetitive sequences, are recalcitrant to faithful amplification. Yet, a large number of genetic disorders are caused by expansions of repeat sequences. Furthermore, for some disorders, methylation status has been shown to be a key factor in the mechanism of disease.


June 1, 2021  |  

Amplification-free, CRISPR-Cas9 targeted enrichment and SMRT Sequencing of repeat-expansion disease causative genomic regions

Targeted sequencing has proven to be economical for obtaining sequence information for defined regions of the genome. However, most target enrichment methods are reliant upon some form of amplification which can negatively impact downstream analysis. For example, amplification removes epigenetic marks present in native DNA, including nucleotide methylation, which are hypothesized to contribute to disease mechanisms in some disorders. In addition, some genomic regions known to be causative of many genetic disorders have extreme GC content and/or repetitive sequences that tend to be recalcitrant to faithful amplification. We have developed a novel, amplification-free enrichment technique that employs the CRISPR/Cas9 system to target individual genes. This method, in conjunction with the long reads, high consensus accuracy, and uniform coverage of SMRT Sequencing, allows accurate sequence analysis of complex genomic regions that cannot be investigated with other technologies. Using this strategy, we have successfully targeted a number of repeat expansion disorder loci (HTT, FMR1, ATXN10, C9orf72).With this data, we demonstrate the ability to isolate thousands of individual on-target molecules and, using the Sequel System, accurately sequence through long repeats regardless of the extreme GC-content. The method is compatible with multiplexing of multiple target loci and multiple samples in a single reaction. Furthermore, because there is no amplification step, this technique also preserves native DNA molecules for sequencing, allowing for the direct detection and characterization of epigenetic signatures. To this end, we demonstrate the detection of 5-mC in the CGG repeat of the FMR1 gene that is responsible for Fragile X syndrome.


September 22, 2019  |  

Revertant mosaicism repairs skin lesions in a patient with keratitis-ichthyosis-deafness syndrome by second-site mutations in connexin 26.

Revertant mosaicism (RM) is a naturally occurring phenomenon where the pathogenic effect of a germline mutation is corrected by a second somatic event. Development of healthy-looking skin due to RM has been observed in patients with various inherited skin disorders, but not in connexin-related disease. We aimed to clarify the underlying molecular mechanisms of suspected RM in the skin of a patient with keratitis-ichthyosis-deafness (KID) syndrome. The patient was diagnosed with KID syndrome due to characteristic skin lesions, hearing deficiency and keratitis. Investigation of GJB2 encoding connexin (Cx) 26 revealed heterozygosity for the recurrent de novo germline mutation, c.148G?>?A, p.Asp50Asn. At age 20, the patient developed spots of healthy-looking skin that grew in size and number within widespread erythrokeratodermic lesions. Ultra-deep sequencing of two healthy-looking skin biopsies identified five somatic nonsynonymous mutations, independently present in cis with the p.Asp50Asn mutation. Functional studies of Cx26 in HeLa cells revealed co-expression of Cx26-Asp50Asn and wild-type Cx26 in gap junction channel plaques. However, Cx26-Asp50Asn with the second-site mutations identified in the patient displayed no formation of gap junction channel plaques. We argue that the second-site mutations independently inhibit Cx26-Asp50Asn expression in gap junction channels, reverting the dominant negative effect of the p.Asp50Asn mutation. To our knowledge, this is the first time RM has been reported to result in the development of healthy-looking skin in a patient with KID syndrome. © The Author 2017. Published by Oxford University Press.


July 19, 2019  |  

Polymerase specific error rates and profiles identified by single molecule sequencing.

DNA polymerases have an innate error rate which is polymerase and DNA context specific. Historically the mutational rate and profiles have been measured using a variety of methods, each with their own technical limitations. Here we used the unique properties of single molecule sequencing to evaluate the mutational rate and profiles of six DNA polymerases at the sequence level. In addition to accurately determining mutations in double strands, single molecule sequencing also captures direction specific transversions and transitions through the analysis of heteroduplexes. Not only did the error rates vary, but also the direction specific transitions differed among polymerases. Copyright © 2016 Elsevier B.V. All rights reserved.


July 19, 2019  |  

A novel approach using long-read sequencing and ddPCR to investigate gonadal mosaicism and estimate recurrence risk in two families with developmental disorders.

De novo mutations contribute significantly to severe early-onset genetic disorders. Even if the mutation is apparently de novo, there is a recurrence risk due to parental germ line mosaicism, depending on in which gonadal generation the mutation occurred.We demonstrate the power of using SMRT sequencing and ddPCR to determine parental origin and allele frequencies of de novo mutations in germ cells in two families whom had undergone assisted reproduction.In the first family, a TCOF1 variant c.3156C>T was identified in the proband with Treacher Collins syndrome. The variant affects splicing and was determined to be of paternal origin. It was present in <1% of the paternal germ cells, suggesting a very low recurrence risk. In the second family, the couple had undergone several unsuccessful pregnancies where a de novo mutation PTPN11 c.923A>C causing Noonan syndrome was identified. The variant was present in 40% of the paternal germ cells suggesting a high recurrence risk.Our findings highlight a successful strategy to identify the parental origin of mutations and to investigate the recurrence risk in couples that have undergone assisted reproduction with an unknown donor or in couples with gonadal mosaicism that will undergo preimplantation genetic diagnosis.© 2017 The Authors Prenatal Diagnosis published by John Wiley & Sons Ltd.


July 7, 2019  |  

Identification of low allele frequency mosaic mutations in Alzheimer disease

Germline mutations ofAPP,PSEN1, andPSEN2 genes cause autosomal dominant Alzheimer disease (AD). Somatic variants of the same genes may underlie pathogenesis in sporadic AD, which is the most prevalent form of the disease. Importantly, such somatic variants may be present at very low allelic frequency, confined to the brain, and are thus very difficult or impossible to detect in blood-derived DNA. Ever-refined methodologies to identify mutations present in a fraction of the DNA of the original tissue are rapidly transforming our understanding of DNA mutation and their role in complex pathologies such as tumors. These methods stand poised to test to what extend somatic variants may play a role in AD and other neurodegenerative diseases.


July 7, 2019  |  

Timing, rates and spectra of human germline mutation.

Germline mutations are a driving force behind genome evolution and genetic disease. We investigated genome-wide mutation rates and spectra in multi-sibling families. The mutation rate increased with paternal age in all families, but the number of additional mutations per year differed by more than twofold between families. Meta-analysis of 6,570 mutations showed that germline methylation influences mutation rates. In contrast to somatic mutations, we found remarkable consistency in germline mutation spectra between the sexes and at different paternal ages. In parental germ line, 3.8% of mutations were mosaic, resulting in 1.3% of mutations being shared by siblings. The number of these shared mutations varied significantly between families. Our data suggest that the mutation rate per cell division is higher during both early embryogenesis and differentiation of primordial germ cells but is reduced substantially during post-pubertal spermatogenesis. These findings have important consequences for the recurrence risks of disorders caused by de novo mutations.


July 7, 2019  |  

Structural basis for recombinatorial permissiveness in the generation of Anaplasma marginale Msp2 antigenic variants.

Sequential expression of outer membrane protein antigenic variants is an evolutionarily convergent mechanism used by bacterial pathogens to escape host immune clearance and establish persistent infection. Variants must be sufficiently structurally distinct to escape existing immune effectors yet retain core structural elements required for localization and function within the outer membrane. We examined this balance using Anaplasma marginale, which generates antigenic variants in the outer membrane protein Msp2 using gene conversion. The overwhelming majority of Msp2 variants expressed during long-term persistent infection are mosaics, derived by recombination of oligonucleotide segments from multiple alleles to form unique hypervariable regions (HVR). As a result, the mosaics are not under long-term selective pressure to encode a functional protein; consequently, we hypothesized that the Msp2 HVR is structurally permissive for mosaic expression. Using an integrated approach of predictive modeling with determination of native Msp2 protein structure and function, we demonstrate that structured elements, most notably ß-sheets, are significantly concentrated in the highly conserved N- and C-terminal domains. In contrast the HVR is overwhelmingly random coil with the structured a-helices and ß-sheets confined to the genomically defined “structural tethers” that separate the antigenically variable microdomains. This structure is supported by the surface exposure of the HVR microdomains and the slow diffusion type porin function in native Msp2. Importantly, the predominance of random coil provides plasticity for formation of functional HVR mosaics and realization of the full potential of segmental gene conversion to dramatically expand the variant repertoire. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.