Menu
June 1, 2021  |  

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing.

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, single molecule, real-time (SMRT) Sequencing reads in the 1-2 kb range, with >99% accuracy can be efficiently generated for low amounts of input DNA. 10 ng of input DNA sequenced in 4 SMRT Cells would generate >100,000 such reads. While throughput is low compared to second-generation sequencing, the reads are a true random sampling of the underlying community, since SMRT Sequencing has been shown to have no sequence-context bias. Long read lengths mean that that it would be reasonable to expect a high number of the reads to include gene fragments useful for analysis.


June 1, 2021  |  

Analysis of full-length metagenomic 16S genes by Single Molecule, Real-Time Sequencing

High-throughput sequencing of the complete 16S rRNA gene has become a valuable tool for characterizing microbial communities. However, the short reads produced by second-generation sequencing cannot provide taxonomic classification below the genus level. In this study, we demonstrate the capability of PacBio’s Single Molecule, Real-Time (SMRT) Sequencing to generate community profiles using mock microbial community samples from BEI Resources. We also evaluate multiplexing capabilities using PacBio barcodes on pooled samples comprising heterogeneous 16S amplicon populations representing soil, fecal, and mock communities.


June 1, 2021  |  

Minimization of chimera formation and substitution errors in full-length 16S PCR amplification

The constituents and intra-communal interactions of microbial populations have garnered increasing interest in areas such as water remediation, agriculture and human health. Amplification and sequencing of the evolutionarily conserved 16S rRNA gene is an efficient method of profiling communities. Currently, most targeted amplification focuses on short, hypervariable regions of the 16S sequence. Distinguishing information not spanned by the targeted region is lost, and species-level classification is often not possible. PacBio SMRT Sequencing easily spans the entire 1.5 kb 16S gene in a single read, producing highly accurate single-molecule sequences that can improve the identification of individual species in a metapopulation.However, this process still relies upon PCR amplification from a mixture of similar sequences, which may result in chimeras, or recombinant molecules, at rates upwards of 20%. These PCR artifacts make it difficult to identify novel species, and reduce the amount of informative sequences. We investigated multiple factors that may contribute to chimera formation, such as template damage, denaturation time before and during thermocycling, polymerase extension time, and reaction volume. We found two related factors that contribute to chimera formation: the amount of input template into the PCR reaction, and the number of PCR cycles.A second problem that can confound analysis is sequence errors generated during amplification and sequencing. With the updated algorithm for circular consensus sequencing (CCS2), single-molecule reads can be filtered to 99.99% predicted accuracy. Substitution errors in these highly filtered reads may be dominated by mis-incorporations during amplification. Sequence differences in full-length 16S amplicons from several commercial high-fidelity PCR kits were compared.We show results of our experiments and describe our optimized protocol for full-length 16S amplification for SMRT Sequencing. These optimizations have broader implications for other applications that use PCR amplification to phase variations across targeted regions and generate highly accurate reference sequences.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.