Menu
September 22, 2019  |  

PhyloPythiaS+: a self-training method for the rapid reconstruction of low-ranking taxonomic bins from metagenomes.

Background. Metagenomics is an approach for characterizing environmental microbial communities in situ, it allows their functional and taxonomic characterization and to recover sequences from uncultured taxa. This is often achieved by a combination of sequence assembly and binning, where sequences are grouped into ‘bins’ representing taxa of the underlying microbial community. Assignment to low-ranking taxonomic bins is an important challenge for binning methods as is scalability to Gb-sized datasets generated with deep sequencing techniques. One of the best available methods for species bins recovery from deep-branching phyla is the expert-trained PhyloPythiaS package, where a human expert decides on the taxa to incorporate in the model and identifies ‘training’ sequences based on marker genes directly from the sample. Due to the manual effort involved, this approach does not scale to multiple metagenome samples and requires substantial expertise, which researchers who are new to the area do not have. Results. We have developed PhyloPythiaS+, a successor to our PhyloPythia(S) software. The new (+) component performs the work previously done by the human expert. PhyloPythiaS+ also includes a new k-mer counting algorithm, which accelerated the simultaneous counting of 4-6-mers used for taxonomic binning 100-fold and reduced the overall execution time of the software by a factor of three. Our software allows to analyze Gb-sized metagenomes with inexpensive hardware, and to recover species or genera-level bins with low error rates in a fully automated fashion. PhyloPythiaS+ was compared to MEGAN, taxator-tk, Kraken and the generic PhyloPythiaS model. The results showed that PhyloPythiaS+ performs especially well for samples originating from novel environments in comparison to the other methods. Availability. PhyloPythiaS+ in a virtual machine is available for installation under Windows, Unix systems or OS X on: https://github.com/algbioi/ppsp/wiki.


September 22, 2019  |  

Analysis of gut microbiota – An ever changing landscape.

In the last two decades, the field of metagenomics has greatly expanded due to improvement in sequencing technologies allowing for a more comprehensive characterization of microbial communities. The use of these technologies has led to an unprecedented understanding of human, animal, and environmental microbiomes and have shown that the gut microbiota are comparable to an organ that is intrinsically linked with a variety of diseases. Characterization of microbial communities using next-generation sequencing-by-synthesis approaches have revealed important shifts in microbiota associated with debilitating diseases such as Clostridium difficile infection. But due to limitations in sequence read length, primer biases, and the quality of databases, genus- and species-level classification have been difficult. Third-generation technologies, such as Pacific Biosciences’ single molecule, real-time (SMRT) approach, allow for unbiased, more specific identification of species that are likely clinically relevant. Comparison of Illumina next-generation characterization and SMRT sequencing of samples from patients treated for C. difficile infection revealed similarities in community composition at the phylum and family levels, but SMRT sequencing further allowed for species-level characterization – permitting a better understanding of the microbial ecology of this disease. Thus, as sequencing technologies continue to advance, new species-level insights can be gained in the study of complex and clinically-relevant microbial communities.


September 22, 2019  |  

Complete genome sequence of Paenibacillus polymyxa YC0136, a plant growth–promoting rhizobacterium isolated from tobacco rhizosphere.

Paenibacillus polymyxa strain YC0136 is a plant growth-promoting rhizobacterium with antimicrobial activity, which was isolated from tobacco rhizosphere. Here, we report the complete genome sequence of P. polymyxa YC0136. Several genes with antifungal and antibacterial activity were discovered. Copyright © 2017 Liu et al.


September 22, 2019  |  

Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis.

Propionibacterium acnes and Staphylococcus epidermidis live in close proximity on human skin, and both bacterial species can be isolated from normal and acne vulgaris-affected skin sites. The antagonistic interactions between the two species are poorly understood, as well as the potential significance of bacterial interferences for the skin microbiota. Here, we performed simultaneous antagonism assays to detect inhibitory activities between multiple isolates of the two species. Selected strains were sequenced to identify the genomic basis of their antimicrobial phenotypes.First, we screened 77 P. acnes strains isolated from healthy and acne-affected skin, and representing all known phylogenetic clades (I, II, and III), for their antimicrobial activities against 12?S. epidermidis isolates. One particular phylogroup (I-2) exhibited a higher antimicrobial activity than other P. acnes phylogroups. All genomes of type I-2 strains carry an island encoding the biosynthesis of a thiopeptide with possible antimicrobial activity against S. epidermidis. Second, 20?S. epidermidis isolates were examined for inhibitory activity against 25 P. acnes strains. The majority of S. epidermidis strains were able to inhibit P. acnes. Genomes of S. epidermidis strains with strong, medium and no inhibitory activities against P. acnes were sequenced. Genome comparison underlined the diversity of S. epidermidis and detected multiple clade- or strain-specific mobile genetic elements encoding a variety of functions important in antibiotic and stress resistance, biofilm formation and interbacterial competition, including bacteriocins such as epidermin. One isolate with an extraordinary antimicrobial activity against P. acnes harbors a functional ESAT-6 secretion system that might be involved in the antimicrobial activity against P. acnes via the secretion of polymorphic toxins.Taken together, our study suggests that interspecies interactions could potentially jeopardize balances in the skin microbiota. In particular, S. epidermidis strains possess an arsenal of different mechanisms to inhibit P. acnes. However, if such interactions are relevant in skin disorders such as acne vulgaris remains questionable, since no difference in the antimicrobial activity against, or the sensitivity towards S. epidermidis could be detected between health- and acne-associated strains of P. acnes.


September 22, 2019  |  

Genetic determinants of in vivo fitness and diet responsiveness in multiple human gut Bacteroides.

Libraries of tens of thousands of transposon mutants generated from each of four human gut Bacteroides strains, two representing the same species, were introduced simultaneously into gnotobiotic mice together with 11 other wild-type strains to generate a 15-member artificial human gut microbiota. Mice received one of two distinct diets monotonously, or both in different ordered sequences. Quantifying the abundance of mutants in different diet contexts allowed gene-level characterization of fitness determinants, niche, stability, and resilience and yielded a prebiotic (arabinoxylan) that allowed targeted manipulation of the community. The approach described is generalizable and should be useful for defining mechanisms critical for sustaining and/or approaches for deliberately reconfiguring the highly adaptive and durable relationship between the human gut microbiota and host in ways that promote wellness. Copyright © 2015, American Association for the Advancement of Science.


September 22, 2019  |  

Lentinula edodes genome survey and postharvest transcriptome analysis.

Lentinula edodes is a popular, cultivated edible and medicinal mushroom. Lentinula edodes is susceptible to postharvest problems, such as gill browning, fruiting body softening, and lentinan degradation. We constructed a de novo assembly draft genome sequence and performed gene prediction for Lentinula edodesDe novo assembly was carried out using short reads from paired-end and mate-paired libraries and by using long reads by PacBio, resulting in a contig number of 1,951 and an N50 of 1 Mb. Furthermore, we predicted genes by Augustus using transcriptome sequencing (RNA-seq) data from the whole life cycle of Lentinula edodes, resulting in 12,959 predicted genes. This analysis revealed that Lentinula edodes lacks lignin peroxidase. To reveal genes involved in the loss of quality of Lentinula edodes postharvest fruiting bodies, transcriptome analysis was carried out using serial analysis of gene expression (SuperSAGE). This analysis revealed that many cell wall-related enzymes are upregulated after harvest, such as ß-1,3-1,6-glucan-degrading enzymes in glycoside hydrolase (GH) families GH5, GH16, GH30, GH55, and GH128, and thaumatin-like proteins. In addition, we found that several chitin-related genes are upregulated, such as putative chitinases in GH family 18, exochitinases in GH20, and a putative chitosanase in GH family 75. The results suggest that cell wall-degrading enzymes synergistically cooperate for rapid fruiting body autolysis. Many putative transcription factor genes were upregulated postharvest, such as genes containing high-mobility-group (HMG) domains and zinc finger domains. Several cell death-related proteins were also upregulated postharvest.IMPORTANCE Our data collectively suggest that there is a rapid fruiting body autolysis system in Lentinula edodes The genes for the loss of postharvest quality newly found in this research will be targets for the future breeding of strains that keep fresh longer than present strains. De novoLentinula edodes genome assembly data will be used for the construction of a complete Lentinula edodes chromosome map for future breeding. Copyright © 2017 American Society for Microbiology.


September 22, 2019  |  

Gut microbiota, nitric oxide, and microglia as prerequisites for neurodegenerative disorders.

Regulating fluctuating endogenous nitric oxide (NO) levels is necessary for proper physiological functions. Aberrant NO pathways are implicated in a number of neurological disorders, including Alzheimer’s disease (AD) and Parkinson’s disease. The mechanism of NO in oxidative and nitrosative stress with pathological consequences involves reactions with reactive oxygen species (e.g., superoxide) to form the highly reactive peroxynitrite, hydrogen peroxide, hypochloride ions and hydroxyl radical. NO levels are typically regulated by endogenous nitric oxide synthases (NOS), and inflammatory iNOS is implicated in the pathogenesis of neurodegenerative diseases, in which elevated NO mediates axonal degeneration and activates cyclooxygenases to provoke neuroinflammation. NO also instigates a down-regulated secretion of brain-derived neurotrophic factor, which is essential for neuronal survival, development and differentiation, synaptogenesis, and learning and memory. The gut-brain axis denotes communication between the enteric nervous system (ENS) of the GI tract and the central nervous system (CNS) of the brain, and the modes of communication include the vagus nerve, passive diffusion and carrier by oxyhemoglobin. Amyloid precursor protein that forms amyloid beta plaques in AD is normally expressed in the ENS by gut bacteria, but when amyloid beta accumulates, it compromises CNS functions. Escherichia coli and Salmonella enterica are among the many bacterial strains that express and secrete amyloid proteins and contribute to AD pathogenesis. Gut microbiota is essential for regulating microglia maturation and activation, and activated microglia secrete significant amounts of iNOS. Pharmacological interventions and lifestyle modifications to rectify aberrant NO signaling in AD include NOS inhibitors, NMDA receptor antagonists, potassium channel modulators, probiotics, diet, and exercise.


September 22, 2019  |  

Long-read, Single Molecule, Real-Time (SMRT) DNA Sequencing for metagenomic applications

In this chapter, we describe applications of single molecule, real-time (SMRT) DNA sequencing toward metagenomic research. The long sequence reads, combined with a lack of bias with respect to DNA sequence context or GC content, facilitate a more comprehensive analysis of the genomic constitution of microbial communities. Full-length 16S RNA gene sequencing at high (>99%) accuracy allows for species-level characterization of community members concomitant with the determination of community structure. The application of SMRT sequencing to whole-community shotgun microbial metagenomics has also been discussed.


September 22, 2019  |  

A novel enrichment strategy reveals unprecedented number of novel transcription start sites at single base resolution in a model prokaryote and the gut microbiome.

The initiating nucleotide found at the 5′ end of primary transcripts has a distinctive triphosphorylated end that distinguishes these transcripts from all other RNA species. Recognizing this distinction is key to deconvoluting the primary transcriptome from the plethora of processed transcripts that confound analysis of the transcriptome. The currently available methods do not use targeted enrichment for the 5’end of primary transcripts, but rather attempt to deplete non-targeted RNA.We developed a method, Cappable-seq, for directly enriching for the 5′ end of primary transcripts and enabling determination of transcription start sites at single base resolution. This is achieved by enzymatically modifying the 5′ triphosphorylated end of RNA with a selectable tag. We first applied Cappable-seq to E. coli, achieving up to 50 fold enrichment of primary transcripts and identifying an unprecedented 16539 transcription start sites (TSS) genome-wide at single base resolution. We also applied Cappable-seq to a mouse cecum sample and identified TSS in a microbiome.Cappable-seq allows for the first time the capture of the 5′ end of primary transcripts. This enables a unique robust TSS determination in bacteria and microbiomes.  In addition to and beyond TSS determination, Cappable-seq depletes ribosomal RNA and reduces the complexity of the transcriptome to a single quantifiable tag per transcript enabling digital profiling of gene expression in any microbiome.


September 22, 2019  |  

Metataxonomic and metagenomic approaches vs. culture-based techniques for clinical pathology.

Diagnoses that are both timely and accurate are critically important for patients with life-threatening or drug resistant infections. Technological improvements in High-Throughput Sequencing (HTS) have led to its use in pathogen detection and its application in clinical diagnoses of infectious diseases. The present study compares two HTS methods, 16S rRNA marker gene sequencing (metataxonomics) and whole metagenomic shotgun sequencing (metagenomics), in their respective abilities to match the same diagnosis as traditional culture methods (culture inference) for patients with ventilator associated pneumonia (VAP). The metagenomic analysis was able to produce the same diagnosis as culture methods at the species-level for five of the six samples, while the metataxonomic analysis was only able to produce results with the same species-level identification as culture for two of the six samples. These results indicate that metagenomic analyses have the accuracy needed for a clinical diagnostic tool, but full integration in diagnostic protocols is contingent on technological improvements to decrease turnaround time and lower costs.


September 22, 2019  |  

Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system.

Over the past 10 years, microbial ecologists have largely abandoned sequencing 16S rRNA genes by the Sanger sequencing method and have instead adopted highly parallelized sequencing platforms. These new platforms, such as 454 and Illumina’s MiSeq, have allowed researchers to obtain millions of high quality but short sequences. The result of the added sequencing depth has been significant improvements in experimental design. The tradeoff has been the decline in the number of full-length reference sequences that are deposited into databases. To overcome this problem, we tested the ability of the PacBio Single Molecule, Real-Time (SMRT) DNA sequencing platform to generate sequence reads from the 16S rRNA gene. We generated sequencing data from the V4, V3-V5, V1-V3, V1-V5, V1-V6, and V1-V9 variable regions from within the 16S rRNA gene using DNA from a synthetic mock community and natural samples collected from human feces, mouse feces, and soil. The mock community allowed us to assess the actual sequencing error rate and how that error rate changed when different curation methods were applied. We developed a simple method based on sequence characteristics and quality scores to reduce the observed error rate for the V1-V9 region from 0.69 to 0.027%. This error rate is comparable to what has been observed for the shorter reads generated by 454 and Illumina’s MiSeq sequencing platforms. Although the per base sequencing cost is still significantly more than that of MiSeq, the prospect of supplementing reference databases with full-length sequences from organisms below the limit of detection from the Sanger approach is exciting.


September 22, 2019  |  

Next generation multilocus sequence typing (NGMLST) and the analytical software program MLSTEZ enable efficient, cost-effective, high-throughput, multilocus sequencing typing.

Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological species, and it is especially useful for analyzing haploid eukaryotes. MLST is rigorous, reproducible, and informative, and MLST genotyping has been shown to identify major phylogenetic clades, molecular groups, or subpopulations of a species, as well as individual strains or clones. MLST molecular types often correlate with important phenotypes. Conventional MLST involves the extraction of genomic DNA and the amplification by PCR of several conserved, unlinked gene sequences from a sample of isolates of the taxon under investigation. In some cases, as few as three loci are sufficient to yield definitive results. The amplicons are sequenced, aligned, and compared by phylogenetic methods to distinguish statistically significant differences among individuals and clades. Although MLST is simpler, faster, and less expensive than whole genome sequencing, it is more costly and time-consuming than less reliable genotyping methods (e.g. amplified fragment length polymorphisms). Here, we describe a new MLST method that uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide accurate, rapid, and economical MLST genotyping of 96 or more isolates in single assay. We demonstrate this methodology by genotyping isolates of the well-characterized, human pathogenic yeast Cryptococcus neoformans. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

The features of mucosa-associated microbiota in primary sclerosing cholangitis.

Little is known about the role of the microbiome in primary sclerosing cholangitis.To explore the mucosa-associated microbiota in primary sclerosing cholangitis (PSC) patients across different locations in the gut, and to compare it with inflammatory bowel disease (IBD)-only patients and healthy controls.Biopsies from the terminal ileum, right colon, and left colon were collected from patients and healthy controls undergoing colonoscopy. Microbiota profiling using bacterial 16S rRNA sequencing was performed on all biopsies.Forty-four patients were recruited: 20 with PSC (19 with PSC-IBD and one with PSC-only), 15 with IBD-only and nine healthy controls. The overall microbiome profile was similar throughout different locations in the gut. No differences in the global microbiome profile were found. However, we observed significant PSC-associated enrichment in Barnesiellaceae at the family level, and in Blautia and an unidentified Barnesiellaceae at the genus level. At the operational taxa unit level, most shifts in PSC were observed in Clostridiales and Bacteroidales orders, with approximately 86% of shifts occurring within the former order.The overall microbiota profile was similar across multiple locations in the gut from the same individual regardless of disease status. In this study, the mucosa associated-microbiota of patients with primary sclerosing cholangitis was characterised by enrichment of Blautia and Barnesiellaceae and by major shifts in operational taxa units within Clostridiales order.© 2016 John Wiley & Sons Ltd.


September 22, 2019  |  

Laboratory colonization stabilizes the naturally dynamic microbiome composition of field collected Dermacentor andersoni ticks.

Nearly a quarter of emerging infectious diseases identified in the last century are arthropod-borne. Although ticks and insects can carry pathogenic microorganisms, non-pathogenic microbes make up the majority of their microbial communities. The majority of tick microbiome research has had a focus on discovery and description; very few studies have analyzed the ecological context and functional responses of the bacterial microbiome of ticks. The goal of this analysis was to characterize the stability of the bacterial microbiome of Dermacentor andersoni ticks between generations and two populations within a species.The bacterial microbiome of D. andersoni midguts and salivary glands was analyzed from populations collected at two different ecologically distinct sites by comparing field (F1) and lab-reared populations (F1-F3) over three generations. The microbiome composition of pooled and individual samples was analyzed by sequencing nearly full-length 16S rRNA gene amplicons using a Pacific Biosciences CCS platform that allows identification of bacteria to the species level.In this study, we found that the D. andersoni microbiome was distinct in different geographic populations and was tissue specific, differing between the midgut and the salivary gland, over multiple generations. Additionally, our study showed that the microbiomes of laboratory-reared populations were not necessarily representative of their respective field populations. Furthermore, we demonstrated that the microbiome of a few individual ticks does not represent the microbiome composition at the population level.We demonstrated that the bacterial microbiome of D. andersoni was complex over three generations and specific to tick tissue (midgut vs. salivary glands) as well as geographic location (Burns, Oregon vs. Lake Como, Montana vs. laboratory setting). These results provide evidence that habitat of the tick population is a vital component of the complexity of the bacterial microbiome of ticks, and that the microbiome of lab colonies may not allow for comparative analyses with field populations. A broader understanding of microbiome variation will be required if we are to employ manipulation of the microbiome as a method for interfering with acquisition and transmission of tick-borne pathogens.


September 22, 2019  |  

Bypassing the Restriction System To Improve Transformation of Staphylococcus epidermidis.

Staphylococcus epidermidis is the leading cause of infections on indwelling medical devices worldwide. Intrinsic antibiotic resistance and vigorous biofilm production have rendered these infections difficult to treat and, in some cases, require the removal of the offending medical prosthesis. With the exception of two widely passaged isolates, RP62A and 1457, the pathogenesis of infections caused by clinical S. epidermidis strains is poorly understood due to the strong genetic barrier that precludes the efficient transformation of foreign DNA into clinical isolates. The difficulty in transforming clinical S. epidermidis isolates is primarily due to the type I and IV restriction-modification systems, which act as genetic barriers. Here, we show that efficient plasmid transformation of clinical S. epidermidis isolates from clonal complexes 2, 10, and 89 can be realized by employing a plasmid artificial modification (PAM) in Escherichia coli DC10B containing a ?dcm mutation. This transformative technique should facilitate our ability to genetically modify clinical isolates of S. epidermidis and hence improve our understanding of their pathogenesis in human infections.IMPORTANCEStaphylococcus epidermidis is a source of considerable morbidity worldwide. The underlying mechanisms contributing to the commensal and pathogenic lifestyles of S. epidermidis are poorly understood. Genetic manipulations of clinically relevant strains of S. epidermidis are largely prohibited due to the presence of a strong restriction barrier. With the introductions of the tools presented here, genetic manipulation of clinically relevant S. epidermidis isolates has now become possible, thus improving our understanding of S. epidermidis as a pathogen. Copyright © 2017 American Society for Microbiology.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.