Obtaining microbial genomes with the highest accuracy and contiguity is extremely important when exploring the functional impact of genetic and epigenetic variants on a genome-wide scale. A comprehensive view of the bacterial genome, including genes, regulatory regions, IS elements, phage integration sites, and base modifications is vital to understanding key traits such as antibiotic resistance, virulence, and metabolism. SMRT Sequencing provides complete genomes, often assembled into a single contig. Our streamlined microbial multiplexing procedure for the Sequel System, from library preparation to genome assembly, can be completed with less than 8 hours bench time. Starting with high-quality genomic DNA (gDNA),…
The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for obtaining complete microbial genome assemblies with multiplexed sequencing. By using a single-tube, addition-only strategy, the streamlined workflow reduces…
In this AGBT 2017 talk, PacBio CSO Jonas Korlach provided a technology roadmap for the Sequel System, including plans the continue performance and throughput increases through early 2019. Per SMRT Cell throughput of the Sequel System is expected to double this year and again next year. Together with a new higher-capacity SMRT Cell expected to be released by the end of 2018, these improvements result in a ~30-fold increase or ~150 Gb / SMRT Cell allowing a real $1000 real de novo human genome assembly. Also discussed: Additional application protocol improvements, new chemistry and software updates, and a look at…
In this PAG 2018 presentation, Marty Badgett of PacBio, shares updates on PacBio products and performance. He highlights high-quality genome assembles for Arabidopsis, rice, and maize, the SMRTbell Express Template Prep Kit, SMRT Analysis updates, and the Iso-Seq method for RNA sequencing.
This tutorial provides an overview of the PacBio Demultiplex Barcodes analysis application in SMRT Link, followed by de novo assembly of the demultiplexed samples using HGAP4 for the Multiplexed Microbial Assembly analysis application. This tutorial covers features of SMRT Link v5.1.0.
PacBio sequencing has been recognized as the gold-standard in microbial sequencing due to simultaneously providing long sequence reads (genome contiguity), high consensus accuracy (genome accuracy), minimal sequence bias (genome completeness), and methylation detection (bacterial epigenome). In his talk Jonas Korlach, highlights new advances and updates on applying PacBio sequencing in microbiology, including multiplexed microbial sequencing on the Sequel System and full-length bacterial RNA sequencing. In the second part of his talk, he covers how the generation of high-accuracy, single-molecule consensus reads, through a process called circular consensus sequencing – a capability unique to PacBio sequencing technology – can be leveraged…
In this webinar, Ben Auch, Research Scientist, Innovation Lab, University of Minnesota Genomics Center, Cody Sheik, Assistant Professor of Biology, University of Minnesota Duluth, and Harm van Bakel, Assistant Professor of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai provide details of the newly updated microbial whole genome sequencing pipeline, which leverages the multiplexing capabilities of the Sequel System, share new insights into the ecophysiology of Minnesota microbes using long-read sequencing, and show of how whole genome sequencing is used in pathogen surveillance programs at hospitals.
We have streamlined the SMRTbell library generation protocols with improved workflows to deliver seamless end-to-end solutions from sample to analysis. A key improvement is the development of a single-tube reaction strategy that shortened hands-on time needed to generate each SMRTbell library, reduced time-consuming AM Pure purification steps, and minimized sample-handling induced gDNA damage to improve the integrity of long-insert SMRTbell templates for sequencing. The improved protocols support all large-insert genomic libraries, multiplexed microbial genomes, and amplicon sequencing. These advances enable completion of library preparation in less than a day (approximately 4 hours) and opens opportunities for automated library preparation for…