Menu
July 19, 2019  |  

Chromosomal-level assembly of the Asian seabass genome using long sequence reads and multi-layered scaffolding.

We report here the ~670 Mb genome assembly of the Asian seabass (Lates calcarifer), a tropical marine teleost. We used long-read sequencing augmented by transcriptomics, optical and genetic mapping along with shared synteny from closely related fish species to derive a chromosome-level assembly with a contig N50 size over 1 Mb and scaffold N50 size over 25 Mb that span ~90% of the genome. The population structure of L. calcarifer species complex was analyzed by re-sequencing 61 individuals representing various regions across the species’ native range. SNP analyses identified high levels of genetic diversity and confirmed earlier indications of a population stratification comprising three clades with signs of admixture apparent in the South-East Asian population. The quality of the Asian seabass genome assembly far exceeds that of any other fish species, and will serve as a new standard for fish genomics.


July 19, 2019  |  

Comparative analyses of low, medium and high-resolution HLA typing technologies for human populations

Human Leukocyte Antigen (HLA) encoding genes are part of the major histocompatibility complex (MHC) on human chromosome 6. This region is one of the most polymorphic regions in the human genome. Prior knowledge of HLA allelic polymorphisms is clinically important for matching donor and recipient during organ/tissue transplantation. HLA allelic information is also useful in predicting immune responses to various infectious diseases, genetic disorders and autoimmune conditions. India harbors over a billion people and its population is untapped for HLA allelic diversity. In this study, we explored and compared three HLA typing methods for South Indian population, using Sequence-Specific Primers (SSP), NGS (Roche/454) and single- molecule sequencing (PacBio RS II) platforms. Over 1020 DNA samples were typed at low resolution using SSP method to determine the major HLA alleles within the South Indian population. These studies were followed up with medium resolution HLA typing of 80 samples based on exonic sequences on the Roche/454 sequencing system and high-resolution (6-8 digit) typing of 8 samples for HLA alleles of class I genes (HLA-A, B and C) and class II genes (HLA-DRB1 and DQB1) using PacBio RS II platform. The long reads delivered by SMRT technology, covered the full-length class I and class II genes/alleles in contiguous reads including untranslated regions, exons and introns, which provided phased SNP information. We have identified three novel alleles from PacBio data that were verified by Roche 454 sequencing. This is the first case study of HLA typing using second and third generation NGS technologies for an Indian population. The PacBio platform is a promising platform for large-scale HLA typing for establishing an HLA database for the untapped ethnic populations of India.


July 19, 2019  |  

Towards precision medicine.

There is great potential for genome sequencing to enhance patient care through improved diagnostic sensitivity and more precise therapeutic targeting. To maximize this potential, genomics strategies that have been developed for genetic discovery – including DNA-sequencing technologies and analysis algorithms – need to be adapted to fit clinical needs. This will require the optimization of alignment algorithms, attention to quality-coverage metrics, tailored solutions for paralogous or low-complexity areas of the genome, and the adoption of consensus standards for variant calling and interpretation. Global sharing of this more accurate genotypic and phenotypic data will accelerate the determination of causality for novel genes or variants. Thus, a deeper understanding of disease will be realized that will allow its targeting with much greater therapeutic precision.


July 19, 2019  |  

Gorilla MHC class I gene and sequence variation in a comparative context.

Comparisons of MHC gene content and diversity among closely related species can provide insights into the evolutionary mechanisms shaping immune system variation. After chimpanzees and bonobos, gorillas are humans’ closest living relatives; but in contrast, relatively little is known about the structure and variation of gorilla MHC class I genes (Gogo). Here, we combined long-range amplifications and long-read sequencing technology to analyze full-length MHC class I genes in 35 gorillas. We obtained 50 full-length genomic sequences corresponding to 15 Gogo-A alleles, 4 Gogo-Oko alleles, 21 Gogo-B alleles, and 10 Gogo-C alleles including 19 novel coding region sequences. We identified two previously undetected MHC class I genes related to Gogo-A and Gogo-B, respectively, thereby illustrating the potential of this approach for efficient and highly accurate MHC genotyping. Consistent with their phylogenetic position within the hominid family, individual gorilla MHC haplotypes share characteristics with humans and chimpanzees as well as orangutans suggesting a complex history of the MHC class I genes in humans and the great apes. However, the overall MHC class I diversity appears to be low further supporting the hypothesis that gorillas might have experienced a reduction of their MHC repertoire.


July 19, 2019  |  

Genomic structure of the horse major histocompatibility complex class II region resolved using PacBio long-read sequencing technology.

The mammalian Major Histocompatibility Complex (MHC) region contains several gene families characterized by highly polymorphic loci with extensive nucleotide diversity, copy number variation of paralogous genes, and long repetitive sequences. This structural complexity has made it difficult to construct a reliable reference sequence of the horse MHC region. In this study, we used long-read single molecule, real-time (SMRT) sequencing technology from Pacific Biosciences (PacBio) to sequence eight Bacterial Artificial Chromosome (BAC) clones spanning the horse MHC class II region. The final assembly resulted in a 1,165,328?bp continuous gap free sequence with 35 manually curated genomic loci of which 23 were considered to be functional and 12 to be pseudogenes. In comparison to the MHC class II region in other mammals, the corresponding region in horse shows extraordinary copy number variation and different relative location and directionality of the Eqca-DRB, -DQA, -DQB and -DOB loci. This is the first long-read sequence assembly of the horse MHC class II region with rigorous manual gene annotation, and it will serve as an important resource for association studies of immune-mediated equine diseases and for evolutionary analysis of genetic diversity in this region.


July 19, 2019  |  

A new chicken genome assembly provides insight into avian genome structure.

The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts. Copyright © 2017 Warren et al.


July 19, 2019  |  

Characterisation of MHC class I genes in the koala.

Koala (Phascolarctos cinereus) populations are on the decline across the majority of Australia’s mainland. Two major diseases threatening the long-term survival of affected koala populations are caused by obligate intracellular pathogens: Chlamydia and koala retrovirus (KoRV). To improve our understanding of the koala immune system, we characterised their major histocompatibility complex (MHC) class I genes, which are centrally involved in presenting foreign peptides derived from intracellular pathogens to cytotoxic T cells. A total of 11 class I genes were identified in the koala genome. Three genes, Phci-UA, UB and UC, showed relatively high genetic variability and were expressed in all 12 examined tissues, whereas the other eight genes had tissue-specific expression and limited polymorphism. Evidence of diversifying selection was detected in Phci-UA and UC, while gene conversion may have played a role in creating new alleles at Phci-UB. We propose that Phci-UA, UB and UC are likely classical MHC genes of koalas, and further research is needed to understand their role in koala chlamydial and KoRV infections.


July 19, 2019  |  

Single molecule real-time (SMRT®) DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines.

The hyperpolymorphic HLA genes play important roles in disease and transplantation and act as genetic markers of migration and evolution. A panel of 107 B-lymphoblastoid cell lines (B-LCLs) was established in 1987 at the 10th International Histocompatibility Workshop as a resource for the immunogenetics community. These B-LCLs are well characterised and represent diverse ethnicities and HLA haplotypes. Here we have applied Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing to HLA type 126 B-LCL, including the 107 IHIW cells, to ultra-high resolution. Amplicon sequencing of full-length HLA class I genes (HLA-A, -B and -C) and partial length HLA class II genes (HLA-DRB1, -DQB1 and -DPB1) was performed. We typed a total of 931 HLA alleles, 895 (96%) of which were consistent with the typing in the IPD-IMGT/HLA Database (Release 3.27.0, 2017-01-20), with 595 (64%) typed at a higher resolution. Discrepant types, including novel alleles (n=10) and changes in zygosity (n=13), as well as previously unreported types (n=34) were observed. In addition, patterns of linkage disequilibrium were distinguished by four-field resolution typing of HLA-B and HLA-C. By improving and standardising the HLA typing of these B-LCLs, we have ensured their continued usefulness as a resource for the immunogenetics community in the age of next generation DNA sequencing.This article is protected by copyright. All rights reserved.


July 19, 2019  |  

A high-quality, long-read de novo genome assembly to aid conservation of Hawaii’s last remaining crow species

Genome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, which can inform conservation management. Here, we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the ?Alala (Corvus hawaiiensis; Hawaiian crow). As the only remaining native crow species in Hawai?i, the ?Alala survived solely in a captive-breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the ?Alala genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important in conservation management, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.


July 7, 2019  |  

The assembly and characterisation of two structurally distinct cattle MHC class I haplotypes point to the mechanisms driving diversity.

In cattle, there are six classical MHC class I genes that are variably present between different haplotypes. Almost all known haplotypes contain between one and three genes, with an allele of Gene 2 present on the vast majority. However, very little is known about the sequence and therefore structure and evolutionary history of this genomic region. To address this, we have refined the MHC class I region in the Hereford cattle genome assembly and sequenced a complete A14 haplotype from a homozygous Holstein. Comparison of the two haplotypes revealed extensive variation within the MHC class Ia region, but not within the flanking regions, with each gene contained within a conserved 63- to 68-kb sequence block. This variable region appears to have undergone block gene duplication and likely deletion at regular breakpoints, suggestive of a site-specific mechanism. Phylogenetic analysis using complete gene sequences provided evidence of allelic diversification via gene conversion, with breakpoints between each of the extracellular domains that were associated with high guanine-cytosine (GC) content. Advancing our knowledge of cattle MHC class I evolution will help inform investigations of cattle genetic diversity and disease resistance.


July 7, 2019  |  

An improved genome assembly uncovers prolific tandem repeats in Atlantic cod.

The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies.By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created a substantially improved version of the Atlantic cod genome assembly. The sequence contiguity of this assembly is increased fifty-fold and the proportion of gap-bases has been reduced fifteen-fold. Compared to other vertebrates, the assembly contains an unusual high density of tandem repeats (TRs). Indeed, retrospective analyses reveal that gaps in the first genome assembly were largely associated with these TRs. We show that 21% of the TRs across the assembly, 19% in the promoter regions and 12% in the coding sequences are heterozygous in the sequenced individual.The inclusion of PacBio reads combined with the use of multiple assembly programs drastically improved the Atlantic cod genome assembly by successfully resolving long TRs. The high frequency of heterozygous TRs within or in the vicinity of genes in the genome indicate a considerable standing genomic variation in Atlantic cod populations, which is likely of evolutionary importance.


July 7, 2019  |  

MHC class I diversity in chimpanzees and bonobos.

Major histocompatibility complex (MHC) class I genes are critically involved in the defense against intracellular pathogens. MHC diversity comparisons among samples of closely related taxa may reveal traces of past or ongoing selective processes. The bonobo and chimpanzee are the closest living evolutionary relatives of humans and last shared a common ancestor some 1 mya. However, little is known concerning MHC class I diversity in bonobos or in central chimpanzees, the most numerous and genetically diverse chimpanzee subspecies. Here, we used a long-read sequencing technology (PacBio) to sequence the classical MHC class I genes A, B, C, and A-like in 20 and 30 wild-born bonobos and chimpanzees, respectively, with a main focus on central chimpanzees to assess and compare diversity in those two species. We describe in total 21 and 42 novel coding region sequences for the two species, respectively. In addition, we found evidence for a reduced MHC class I diversity in bonobos as compared to central chimpanzees as well as to western chimpanzees and humans. The reduced bonobo MHC class I diversity may be the result of a selective process in their evolutionary past since their split from chimpanzees.


July 7, 2019  |  

The MHC locus and genetic susceptibility to autoimmune and infectious diseases.

In the past 50 years, variants in the major histocompatibility complex (MHC) locus, also known as the human leukocyte antigen (HLA), have been reported as major risk factors for complex diseases. Recent advances, including large genetic screens, imputation, and analyses of non-additive and epistatic effects, have contributed to a better understanding of the shared and specific roles of MHC variants in different diseases. We review these advances and discuss the relationships between MHC variants involved in autoimmune and infectious diseases. Further work in this area will help to distinguish between alternative hypotheses for the role of pathogens in autoimmune disease development.


July 7, 2019  |  

Assembly and characterization of the MHC class I region of the Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis).

The Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis; YFP) is the sole freshwater subspecies of N. asiaeorientalis and is now critically endangered. Major histocompatibility complex (MHC) is a family of highly polymorphic genes that play an important immunological role in antigen presentation in the vertebrates. Currently, however, little is known about MHC region in the genome of the YFP, which hampers conservation genetics and evolutionary ecology study using MHC genes. In this work, a nucleotide sequence of 774,811 bp covering the YFP MHC class I region was obtained by screening a YFP bacterial artificial chromosome (BAC) library, followed by sequencing and assembly of positive BAC clones. A total of 45 genes were successfully annotated, of which four were MHC class I genes. There are high similarities among the four YFP MHC class I genes (>94 %). Divergence in the coding region of the four YFP MHC class I genes is mainly localized to exons 2 and 3, which encode the antigen-binding sites of MHC class I genes. Additionally, comparison of the MHC structure in YFP to those of cattle, sheep, and pig showed that MHC class I genes are located in genome regions with regard to the conserved genes, and the YFP contains the fewest MHC class I genes among these species. This is the first report characterizing a cetacean MHC class I region and describing its organization, which would be valuable for further investigation of adaptation in natural populations of the YFP and other cetaceans.


July 7, 2019  |  

Moving forward: recent developments for the ferret biomedical research model.

Since the initial report in 1911, the domestic ferret has become an invaluable biomedical research model. While widely recognized for its utility in influenza virus research, ferrets are used for a variety of infectious and noninfectious disease models due to the anatomical, metabolic, and physiological features they share with humans and their susceptibility to many human pathogens. However, there are limitations to the model that must be overcome for maximal utility for the scientific community. Here, we describe important recent advances that will accelerate biomedical research with this animal model. Copyright © 2018 Albrecht et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.