Menu
July 7, 2019  |  

Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea.

The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.


July 7, 2019  |  

Whole-genome assembly of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 carbapenemases using Single-Molecule, Real-Time Sequencing.

The whole-genome sequence of a carbapenem-resistant Klebsiella pneumoniae strain, PittNDM01, which coproduces NDM-1 and OXA-232 carbapenemases, was determined in this study. The use of single-molecule, real-time (SMRT) sequencing provided a closed genome in a single sequencing run. K. pneumoniae PittNDM01 has a single chromosome of 5,348,284 bp and four plasmids: pPKPN1 (283,371 bp), pPKPN2 (103,694 bp), pPKPN3 (70,814 bp), and pPKPN4 (6,141 bp). The contents of the chromosome were similar to that of the K. pneumoniae reference genome strain MGH 78578, with the exception of a large inversion spanning 23.3% of the chromosome. In contrast, three of the four plasmids are unique. The plasmid pPKPN1, an IncHI1B-like plasmid, carries the blaNDM-1, armA, and qnrB1 genes, along with tellurium and mercury resistance operons. blaNDM-1 is carried on a unique structure in which Tn125 is further bracketed by IS26 downstream of a class 1 integron. The IncFIA-like plasmid pPKPN3 also carries an array of resistance elements, including blaCTX-M-15 and a mercury resistance operon. The ColE-type plasmid pPKPN4 carrying blaOXA-232 is identical to a plasmid previously reported from France. SMRT sequencing was useful in resolving the complex bacterial genomic structures in the de novo assemblies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Genome sequencing of an extended series of NDM-producing Klebsiella pneumoniae isolates from Neonatal infections in a Nepali hospital characterizes the extent of community- versus hospital-associated transmission in an endemic setting.

NDM-producing Klebsiella pneumoniae strains represent major clinical and infection control challenges, particularly in resource-limited settings with high rates of antimicrobial resistance. Determining whether transmission occurs at a gene, plasmid, or bacterial strain level and within hospital and/or the community has implications for monitoring and controlling spread. Whole-genome sequencing (WGS) is the highest-resolution typing method available for transmission epidemiology. We sequenced carbapenem-resistant K. pneumoniae isolates from 26 individuals involved in several infection case clusters in a Nepali neonatal unit and 68 other clinical Gram-negative isolates from a similar time frame, using Illumina and PacBio technologies. Within-outbreak chromosomal and closed-plasmid structures were generated and used as data set-specific references. Three temporally separated case clusters were caused by a single NDM K. pneumoniae strain with a conserved set of four plasmids, one being a 304,526-bp plasmid carrying blaNDM-1. The plasmids contained a large number of antimicrobial/heavy metal resistance and plasmid maintenance genes, which may have explained their persistence. No obvious environmental/human reservoir was found. There was no evidence of transmission of outbreak plasmids to other Gram-negative clinical isolates, although blaNDM variants were present in other isolates in different genetic contexts. WGS can effectively define complex antimicrobial resistance epidemiology. Wider sampling frames are required to contextualize outbreaks. Infection control may be effective in terminating outbreaks caused by particular strains, even in areas with widespread resistance, although this study could not demonstrate evidence supporting specific interventions. Larger, detailed studies are needed to characterize resistance genes, vectors, and host strains involved in disease, to enable effective intervention. Copyright © 2014 Stoesser et al.


July 7, 2019  |  

Genome sequences of Vibrio navarrensis, a potential human pathogen.

Vibrio navarrensis is an aquatic bacterium recently shown to be associated with human illness. We report the first genome sequences of three V. navarrensis strains obtained from clinical and environmental sources. Preliminary analyses of the sequences reveal that V. navarrensis contains genes commonly associated with virulence in other human pathogens. Copyright © 2014 Gladney et al.


July 7, 2019  |  

Reclassification of the specialized metabolite producer Pseudomonas mesoacidophila ATCC 31433 as a member of the Burkholderia cepacia complex.

Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the ß-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization.IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted. Copyright © 2017 Loveridge et al.


July 7, 2019  |  

Conservation of the essential genome among Caulobacter and Brevundimonas species.

When the genomes of Caulobacter isolates NA1000 and K31 were compared, numerous genome rearrangements were observed. In contrast, similar comparisons of closely related species of other bacterial genera revealed nominal rearrangements. A phylogenetic analysis of the 16S rRNA indicated that K31 is more closely related to Caulobacter henricii CB4 than to other known Caulobacters. Therefore, we sequenced the CB4 genome and compared it to all of the available Caulobacter genomes to study genome rearrangements, discern the conservation of the NA1000 essential genome, and address concerns about using 16S rRNA to group Caulobacter species. We also sequenced the novel bacteria, Brevundimonas DS20, a representative of the genus most closely related to Caulobacter and used it as part of an outgroup for phylogenetic comparisons. We expected to find that there would be fewer rearrangements when comparing more closely related Caulobacters. However, we found that relatedness was not correlated with the amount of observed “genome scrambling.” We also discovered that nearly all of the essential genes previously identified for C. crescentus are present in the other Caulobacter genomes and in the Brevundimonas genomes as well. However, a few of these essential genes were only found in NA1000, and some were missing in a combination of one or more species, while other proteins were 100 % identical across species. Also, phylogenetic comparisons of highly conserved genomic regions revealed clades similar to those identified by 16S rRNA-based phylogenies, verifying that 16S rRNA sequence comparisons are a valid method for grouping Caulobacters.


July 7, 2019  |  

De novo assembly of complete genome sequence of Planococcus kocurii ATCC 43650(T), a potential plant growth promoting bacterium.

Planococcus kocurii ATCC 43650(T) is a halotolerant and psychrotolerant bacterium isolated from the skin of a North sea cod. Here, we present the first complete genome and annotation of P. kocurii ATCC 43650(T), identifying its potential as a plant growth promoting bacterium and its capability in the biosynthesis of butanol. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete nucleotide sequence of pH11, an IncHI2 plasmid conferring multi-antibiotic resistance and multi-heavy metal resistance genes in a clinical Klebsiella pneumoniae isolate.

The complete 284,628bp sequence of pH11, an IncHI2 plasmid, was determined through single-molecule, real-time (SMRT) sequencing. Harbored by a clinical Klebsiella pneumoniae strain H11, and isolated in Beijing, this plasmid contains multiple antibiotic resistance genes, including catA2, aac(6′)-Ib, strB, strA, dfrA19, blaTEM-1, blaSHV-12, sul1, qacE delta 1, ereA, arr2, and aac3. The aac(6′)-Ib is carried by a class I integron. Plasmid pH11 also carries several genes associated with resistance to heavy metals, such as tellurium, mercury, cobalt, zinc, nickel, copper, lead and cadmium. This plasmid exhibits numerous characteristics, including HipBA and RelBE toxin-antitoxin systems, two major transfer (Tra) regions closely related to those of Salmonella enterica serovar plasmid pRH-R27, a type II restriction modification system (EcoRII R-M system), several methyltransferases and methylases and genes encoding Hha and StpA. These characteristics suggest that pH11 may adapt to various hosts and environments. Multiple insertion sequence elements, transposases, recombinases, resolvases and integrases are scattered throughout pH11. The presence of these genes may indicate that horizontal gene transfer occurs frequently in pH11 and thus may facilitate the dissemination of antimicrobial resistance determinants. Our data suggest that pH11 is a chimera gradually assembled through the integration of different horizontally acquired DNA segments via transposition or homologous recombination. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Complete genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, two phylogenetically distinct probiotics.

Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.


July 7, 2019  |  

Complete genome sequence of the Streptomyces sp. strain CdTB01, a bacterium tolerant to cadmium.

Streptomyces sp. Strain CdTB01, which is tolerant to high concentrations of heavy metals, particularly cadmium, was isolated from soil contaminated with heavy metals. Two contigs with total genome size of 10.19Mb were identified in the whole genome sequencing and assembly, and numerous homologous genes known to be involved in heavy metal resistance were found in the genome. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome and plasmid sequences for Rhodococcus fascians D188 and draft sequences for Rhodococcus isolates PBTS 1 and PBTS 2.

Rhodococcus fascians, a phytopathogen that alters plant development, inflicts significant losses in plant production around the world. We report here the complete genome sequence of R. fascians D188, a well-characterized model isolate, and Rhodococcus species PBTS (pistachio bushy top syndrome) 1 and 2, which were shown to be responsible for a disease outbreak in pistachios. Copyright © 2016 Stamler et al.


July 7, 2019  |  

Complete genome sequence of Bacillus oceanisediminis 2691, a reservoir of heavy-metal resistance genes.

Ocean sediments are commonly subject to the pollution of various heavy metals. Intracellular heavy metal concentrations in marine microorganisms should be kept within allowable concentrations. Here, we report redundant heavy metal resistance related genes encoding heavy metal-sensing transcriptional regulators (i.e. cadC), heavy metal efflux pumps, and detoxifying enzymes in the complete genome sequence of Bacillus oceanisediminis 2691. By comparing CadC sequences of strain 2691 with those from other bacterial genomes, we demonstrated that each cadC gene located in the chromosome or plasmid of 2691 cells are similar to those of various near or distant microbes, which might shed light on evolutionary trajectories of redundant heavy metal resistance genes. In application aspects, these diverse heavy metal sensing genes can be harnessed as synthetic biological parts, modules, and devices for the development of heavy metal-specific biosensors. Heavy metal bioremediation technologies or platform cells can be also developed based on the marine genomic information of heavy metal resistance and/or detoxification genes in a bacterial isolate from ocean sediments. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

The Lysobacter capsici AZ78 genome has a gene pool enabling it to interact successfully with phytopathogenic microorganisms and environmental factors.

Lysobacter capsici AZ78 has considerable potential for biocontrol of phytopathogenic microorganisms. However, lack of information about genetic cues regarding its biological characteristics may slow down its exploitation as a biofungicide. In order to obtain a comprehensive overview of genetic features, the L. capsici AZ78 genome was sequenced, annotated and compared with the phylogenetically related pathogens Stenotrophomonas malthophilia K729a and Xanthomonas campestris pv. campestris ATCC 33913. Whole genome comparison, supported by functional analysis, indicated that L. capsici AZ78 has a larger number of genes responsible for interaction with phytopathogens and environmental stress than S. malthophilia K729a and X. c. pv. campestris ATCC 33913. Genes involved in the production of antibiotics, lytic enzymes and siderophores were specific for L. capsici AZ78, as well as genes involved in resistance to antibiotics, environmental stressors, fungicides and heavy metals. The L. capsici AZ78 genome did not encompass genes involved in infection of humans and plants included in the S. malthophilia K729a and X. c. pv. campestris ATCC 33913 genomes, respectively. The L. capsici AZ78 genome provides a genetic framework for detailed analysis of other L. capsici members and the development of novel biofungicides based on this bacterial strain.


July 7, 2019  |  

Molecular evolution of a Klebsiella pneumoniae ST278 isolate harboring blaNDM-7 and involved in nosocomial transmission.

During 2013, ST278 Klebsiella pneumoniae with blaNDM-7 was isolated from the urine (KpN01) and rectum (KpN02) of a patient in Calgary, Canada. The same strain (KpN04) was subsequently isolated from another patient in the same unit. Interestingly, a carbapenem-susceptible K. pneumoniae ST278 (KpN06) was obtained 1 month later from the blood of the second patient. Next-generation sequencing (NGS) revealed that the loss of carbapenem-resistance in KpN06 was due to a 5-kb deletion on the blaNDM-7-harboring IncX3 plasmid. In addition, an IncFIB plasmid in KpN06 had a 27-kb deletion that removed genes encoding for heavy metal resistance. Phylogenetic analysis showed that the K. pneumoniae ST278 from patient 2 was likely a descendant of KpN02 and that KpN06 was a close progenitor of an environmental ST278. It is unclear whether KpN06 lost the blaNDM-7 gene in vivo. This study detailed the remarkable plasticity and speed of evolutionary changes in multidrug-resistant K. pneumoniae, demonstrating the highly recombinant nature of this species. It also highlights the ability of NGS to clarify molecular microevolutionary events within antibiotic-resistant organisms.© The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.


July 7, 2019  |  

Complete genome sequence of plant growth-promoting bacterium Leifsonia xyli SE134, a possible gibberellin and auxin producer.

Leifsonia xyli SE134 is a potential plant growth-promoting bacterium isolated from a soil in Daegu, Republic of Korea, which produces large amounts of gibberellin (GA) and indole acetic acid (IAA). In this study, we sequenced the complete genome of L. xyli SE134 by the Pacific Biosciences RSII (PacBio) Single Molecule Real Time (SMRT) sequencing technology. The genome of L. xyli SE134 contains a single chromosome that is 3,596,761bp in length, with 70.2% G+C content. The genome contains 3466 protein-coding genes (CDSs) and 51 rRNA- and 46 tRNA-coding genes. By genomic analysis, we identified genes that are potentially involved in plant growth promotion such as genes participating in indole-3-acetic acid (IAA) biosynthesis, siderophore, and trehalose production. L. xyli SE134 also harbours genes for central carbohydrate metabolism, indicating that it can utilise the root exudates with other organic materials as an energy source. Furthermore, the SE134 genome is equipped with various kinds of genes for adaptation to plant surfaces, e.g. defence against desiccation, nutrient deficiencies, and oxidative stress, and a large proportion of genes related to secretion mechanisms and signalling. The genetic information provided here may help to expand this bacterium’s biotechnological potential and to further improve its plant growth-promoting characteristics. Copyright © 2016. Published by Elsevier B.V.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.