July 19, 2019  |  

New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis.

Acinetobacter baumannii is a globally important nosocomial pathogen characterized by an increasing incidence of multidrug resistance. Routes of dissemination and gene flow among health care facilities are poorly resolved and are important for understanding the epidemiology of A. baumannii, minimizing disease transmission, and improving patient outcomes. We used whole-genome sequencing to assess diversity and genome dynamics in 49 isolates from one United States hospital system during one year from 2007 to 2008. Core single-nucleotide-variant-based phylogenetic analysis revealed multiple founder strains and multiple independent strains recovered from the same patient yet was insufficient to fully resolve strain relationships, where gene content and insertion sequence patterns added additional discriminatory power. Gene content comparisons illustrated extensive and redundant antibiotic resistance gene carriage and direct evidence of gene transfer, recombination, gene loss, and mutation. Evidence of barriers to gene flow among hospital components was not found, suggesting complex mixing of strains and a large reservoir of A. baumannii strains capable of colonizing patients.Genome sequencing was used to characterize multidrug-resistant Acinetobacter baumannii strains from one United States hospital system during a 1-year period to better understand how A. baumannii strains that cause infection are related to one another. Extensive variation in gene content was found, even among strains that were very closely related phylogenetically and epidemiologically. Several mechanisms contributed to this diversity, including transfer of mobile genetic elements, mobilization of insertion sequences, insertion sequence-mediated deletions, and genome-wide homologous recombination. Variation in gene content, however, lacked clear spatial or temporal patterns, suggesting a diverse pool of circulating strains with considerable interaction between strains and hospital locations. Widespread genetic variation among strains from the same hospital and even the same patient, particularly involving antibiotic resistance genes, reinforces the need for molecular diagnostic testing and genomic analysis to determine resistance profiles, rather than a reliance primarily on strain typing and antimicrobial resistance phenotypes for epidemiological studies.


July 19, 2019  |  

Complete genome sequence and analysis of Lactobacillus hokkaidonensis LOOC260(T), a psychrotrophic lactic acid bacterium isolated from silage.

Lactobacillus hokkaidonensis is an obligate heterofermentative lactic acid bacterium, which is isolated from Timothy grass silage in Hokkaido, a subarctic region of Japan. This bacterium is expected to be useful as a silage starter culture in cold regions because of its remarkable psychrotolerance; it can grow at temperatures as low as 4°C. To elucidate its genetic background, particularly in relation to the source of psychrotolerance, we constructed the complete genome sequence of L. hokkaidonensis LOOC260(T) using PacBio single-molecule real-time sequencing technology.The genome of LOOC260(T) comprises one circular chromosome (2.28 Mbp) and two circular plasmids: pLOOC260-1 (81.6 kbp) and pLOOC260-2 (41.0 kbp). We identified diverse mobile genetic elements, such as prophages, integrated and conjugative elements, and conjugative plasmids, which may reflect adaptation to plant-associated niches. Comparative genome analysis also detected unique genomic features, such as genes involved in pentose assimilation and NADPH generation.This is the first complete genome in the L. vaccinostercus group, which is poorly characterized, so the genomic information obtained in this study provides insight into the genetics and evolution of this group. We also found several factors that may contribute to the ability of L. hokkaidonensis to grow at cold temperatures. The results of this study will facilitate further investigation for the cold-tolerance mechanism of L. hokkaidonensis.


July 7, 2019  |  

Comparative genome analysis of Pseudomonas knackmussii B13, the first bacterium known to degrade chloroaromatic compounds.

Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103?kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a ‘core’ region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220?kb region and a prophage that drastically change the host metabolic capacity and survivability. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Genome sequence of Serratia nematodiphila DSM 21420T, a symbiotic bacterium from entomopathogenic nematode.

Serratia nematodiphila DSM 21420(T) (=CGMCC 1.6853(T), DZ0503SBS1(T)), isolated from the intestine of Heterorhabditidoides chongmingensis, has been known to have symbiotic-pathogenic life cycle, on the multilateral relationships with entomopathogenic nematode and insect pest. In order to better understanding of this rare feature in Serratia species, we present here the genome sequence of S. nematodiphila DSM 21420(T) with the significance of first genome sequence in this species. Copyright © 2014 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Ceftriaxone-resistant Salmonella enterica serotype Typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid.

Multidrug-resistant bacteria pose a major challenge to the clinical management of infections in resource-poor settings. Although nontyphoidal Salmonella (NTS) bacteria cause predominantly enteric self-limiting illness in developed countries, NTS is responsible for a huge burden of life-threatening bloodstream infections in sub-Saharan Africa. Here, we characterized nine S. Typhimurium isolates from an outbreak involving patients who initially failed to respond to ceftriaxone treatment at a referral hospital in Kenya. These Salmonella enterica serotype Typhimurium isolates were resistant to ampicillin, chloramphenicol, cefuroxime, ceftriaxone, aztreonam, cefepime, sulfamethoxazole-trimethoprim, and cefpodoxime. Resistance to ß-lactams, including to ceftriaxone, was associated with carriage of a combination of blaCTX-M-15, blaOXA-1, and blaTEM-1 genes. The genes encoding resistance to heavy-metal ions were borne on the novel IncHI2 plasmid pKST313, which also carried a pair of class 1 integrons. All nine isolates formed a single clade within S. Typhimurium ST313, the major clone of an ongoing invasive NTS epidemic in the region. This emerging ceftriaxone-resistant clone may pose a major challenge in the management of invasive NTS in sub-Saharan Africa. Copyright © 2015, Kariuki et al.


July 7, 2019  |  

Complete genome sequence of Haloarcula sp. CBA1115 isolated from non-purified solar salts.

Haloarcula sp. CBA1115, isolated from non-purified solar salts from South Korea, is a halophilic archaeon belonging to the family Halobacteriaceae. Here, we present the complete genome sequence of the strain Haloarcula sp. CBA1115 (4,225,046bp, with a G+C content of 61.98%), which is distributed over one chromosome and five plasmids. A comparison of the genome sequence of Haloarcula sp. CBA1115 with those of members of its closely related taxa showed that the closest neighbor is Haloarcula hispanica Y27, a popular model organism for archaeal studies. The strain was found to possess a number of genes predicted to be involved in osmo-regulatory strategies and metal regulation, suggesting that it might be useful for bioremediation in extreme environments. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Paenibacillus beijingensis 7188(T) (=DSM 24997(T)), a novel rhizobacterium from jujube garden soil.

We present here the complete genome sequence of a novel species Paenibacillus beijingensis 7188(T) (=DSM 24997(T)) from jujube rhizosphere soil that consists of one circular chromosome of 5,749,967bp with a GC content of 52.5%. On the significance of first genome information in this species, the genome sequence of strain 7188(T) will provide a better comprehension of Paenibacillus species for the practical uses as a biofertilizer in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genome sequence analysis of the naphthenic acid degrading and metal resistant bacterium Cupriavidus gilardii CR3.

Cupriavidus sp. are generally heavy metal tolerant bacteria with the ability to degrade a variety of aromatic hydrocarbon compounds, although the degradation pathways and substrate versatilities remain largely unknown. Here we studied the bacterium Cupriavidus gilardii strain CR3, which was isolated from a natural asphalt deposit, and which was shown to utilize naphthenic acids as a sole carbon source. Genome sequencing of C. gilardii CR3 was carried out to elucidate possible mechanisms for the naphthenic acid biodegradation. The genome of C. gilardii CR3 was composed of two circular chromosomes chr1 and chr2 of respectively 3,539,530 bp and 2,039,213 bp in size. The genome for strain CR3 encoded 4,502 putative protein-coding genes, 59 tRNA genes, and many other non-coding genes. Many genes were associated with xenobiotic biodegradation and metal resistance functions. Pathway prediction for degradation of cyclohexanecarboxylic acid, a representative naphthenic acid, suggested that naphthenic acid undergoes initial ring-cleavage, after which the ring fission products can be degraded via several plausible degradation pathways including a mechanism similar to that used for fatty acid oxidation. The final metabolic products of these pathways are unstable or volatile compounds that were not toxic to CR3. Strain CR3 was also shown to have tolerance to at least 10 heavy metals, which was mainly achieved by self-detoxification through ion efflux, metal-complexation and metal-reduction, and a powerful DNA self-repair mechanism. Our genomic analysis suggests that CR3 is well adapted to survive the harsh environment in natural asphalts containing naphthenic acids and high concentrations of heavy metals.


July 7, 2019  |  

Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of the heavy metal resistant bacterium Altererythrobacter atlanticus 26DY36(T), isolated from deep-sea sediment of the North Atlantic Mid-ocean ridge.

Altererythrobacter atlanticus 26DY36(T) (CGMCC 1.12411(T)=JCM 18865(T)) was isolated from the North Atlantic Mid-Ocean Ridge. The strain is resistant to heavy metals, such as Mn(2+) (200 mM), Co(2+) (2.0mM), Cu(2+) (1mM), Zn(2+) (1mM), Hg(2+) (0.1mM) and Cd(2+) (0.5mM). Here we describe the genome sequence and annotation, as well as the features of the organism. A. atlanticus 26DY36(T) harbors a chromosome (3,386,291 bp) and a circular plasmid (88,815 bp). The genome contains 3322 protein-coding genes (2483 with predicted functions), 47 tRNA genes and 6 rRNA genes. A. atlanticus 26DY36(T) encodes dozens of genes related to heavy metal resistance and has potential applications in the bioremediation of heavy metal-contaminated environments. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Clonal dissemination of Enterobacter cloacae harboring blaKPC-3 in the upper midwestern United States.

Carbapenemase-producing, carbapenem-resistant Enterobacteriaceae, or CP-CRE, are an emerging threat to human and animal health, because they are resistant to many of the last-line antimicrobials available for disease treatment. Carbapenemase-producing Enterobacter cloacae harboring blaKPC-3 recently was reported in the upper midwestern United States and implicated in a hospital outbreak in Fargo, North Dakota (L. M. Kiedrowski, D. M. Guerrero, F. Perez, R. A. Viau, L. J. Rojas, M. F. Mojica, S. D. Rudin, A. M. Hujer, S. H. Marshall, and R. A. Bonomo, Emerg Infect Dis 20:1583-1585, 2014, http://dx.doi.org/10.3201/eid2009.140344). In early 2009, the Minnesota Department of Health began collecting and screening CP-CRE from patients throughout Minnesota. Here, we analyzed a retrospective group of CP-E. cloacae isolates (n = 34) collected between 2009 and 2013. Whole-genome sequencing and analysis revealed that 32 of the strains were clonal, belonging to the ST171 clonal complex and differing collectively by 211 single-nucleotide polymorphisms, and it revealed a dynamic clone under positive selection. The phylogeography of these strains suggests that this clone existed in eastern North Dakota and western Minnesota prior to 2009 and subsequently was identified in the Minneapolis and St. Paul metropolitan area. All strains harbored identical IncFIA-like plasmids conferring a CP-CRE phenotype and an additional IncX3 plasmid. In a single patient with multiple isolates submitted over several months, we found evidence that these plasmids had transferred from the E. cloacae clone to an Escherichia coli ST131 bacterium, rendering it as a CP-CRE. The spread of this clone throughout the upper midwestern United States is unprecedented for E. cloacae and highlights the importance of continued surveillance to identify such threats to human health. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria.

In recent years, the number of human infections caused by opportunistic pathogens has increased dramatically. Plant rhizospheres are one of the most typical natural reservoirs for these pathogens but they also represent a great source for beneficial microbes with potential for biotechnological applications. However, understanding the natural variation and possible differences between pathogens and beneficials is the main challenge in furthering these possibilities. The genus Stenotrophomonas contains representatives found to be associated with human and plant host.We used comparative genomics as well as transcriptomic and physiological approaches to detect significant borders between the Stenotrophomonas strains: the multi-drug resistant pathogenic S. maltophilia and the plant-associated strains S. maltophilia R551-3 and S. rhizophila DSM14405T (both are biocontrol agents). We found an overall high degree of sequence similarity between the genomes of all three strains. Despite the notable similarity in potential factors responsible for host invasion and antibiotic resistance, other factors including several crucial virulence factors and heat shock proteins were absent in the plant-associated DSM14405T. Instead, S. rhizophila DSM14405T possessed unique genes for the synthesis and transport of the plant-protective spermidine, plant cell-wall degrading enzymes, and high salinity tolerance. Moreover, the presence or absence of bacterial growth at 37°C was identified as a very simple method in differentiating between pathogenic and non-pathogenic isolates. DSM14405T is not able to grow at this human-relevant temperature, most likely in great part due to the absence of heat shock genes and perhaps also because of the up-regulation at increased temperatures of several genes involved in a suicide mechanism.While this study is important for understanding the mechanisms behind the emerging pattern of infectious diseases, it is, to our knowledge, the first of its kind to assess the risk of beneficial strains for biotechnological applications. We identified certain traits typical of pathogens such as growth at the human body temperature together with the production of heat shock proteins as opposed to a temperature-regulated suicide system that is harnessed by beneficials.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.