April 21, 2020  |  

Current advances in HIV vaccine preclinical studies using Macaque models.

The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.


September 22, 2019  |  

The role of MHC-E in T cell immunity is conserved among humans, rhesus macaques, and cynomolgus macaques.

MHC-E is a highly conserved nonclassical MHC class Ib molecule that predominantly binds and presents MHC class Ia leader sequence-derived peptides for NK cell regulation. However, MHC-E also binds pathogen-derived peptide Ags for presentation to CD8+ T cells. Given this role in adaptive immunity and its highly monomorphic nature in the human population, HLA-E is an attractive target for novel vaccine and immunotherapeutic modalities. Development of HLA-E-targeted therapies will require a physiologically relevant animal model that recapitulates HLA-E-restricted T cell biology. In this study, we investigated MHC-E immunobiology in two common nonhuman primate species, Indian-origin rhesus macaques (RM) and Mauritian-origin cynomolgus macaques (MCM). Compared to humans and MCM, RM expressed a greater number of MHC-E alleles at both the population and individual level. Despite this difference, human, RM, and MCM MHC-E molecules were expressed at similar levels across immune cell subsets, equivalently upregulated by viral pathogens, and bound and presented identical peptides to CD8+ T cells. Indeed, SIV-specific, Mamu-E-restricted CD8+ T cells from RM recognized antigenic peptides presented by all MHC-E molecules tested, including cross-species recognition of human and MCM SIV-infected CD4+ T cells. Thus, MHC-E is functionally conserved among humans, RM, and MCM, and both RM and MCM represent physiologically relevant animal models of HLA-E-restricted T cell immunobiology. Copyright © 2017 by The American Association of Immunologists, Inc.


September 22, 2019  |  

No assembly required: Full-length MHC class I allele discovery by PacBio circular consensus sequencing.

Single-molecule real-time (SMRT) sequencing technology with the Pacific Biosciences (PacBio) RS II platform offers the potential to obtain full-length coding regions (~1100-bp) from MHC class I cDNAs. Despite the relatively high error rate associated with SMRT technology, high quality sequences can be obtained by circular consensus sequencing (CCS) due to the random nature of the error profile. In the present study we first validated the ability of SMRT-CCS to accurately identify class I transcripts in Mauritian-origin cynomolgus macaques (Macaca fascicularis) that have been characterized previously by cloning and Sanger-based sequencing as well as pyrosequencing approaches. We then applied this SMRT-CCS method to characterize 60 novel full-length class I transcript sequences expressed by a cohort of cynomolgus macaques from China. The SMRT-CCS method described here provides a straightforward protocol for characterization of unfragmented single-molecule cDNA transcripts that will potentially revolutionize MHC class I allele discovery in nonhuman primates and other species. Published by Elsevier Inc.


September 22, 2019  |  

Major histocompatibility complex haplotyping and long-amplicon allele discovery in cynomolgus macaques from Chinese breeding facilities.

Very little is currently known about the major histocompatibility complex (MHC) region of cynomolgus macaques (Macaca fascicularis; Mafa) from Chinese breeding centers. We performed comprehensive MHC class I haplotype analysis of 100 cynomolgus macaques from two different centers, with animals from different reported original geographic origins (Vietnamese, Cambodian, and Cambodian/Indonesian mixed-origin). Many of the samples were of known relation to each other (sire, dam, and progeny sets), making it possible to characterize lineage-level haplotypes in these animals. We identified 52 Mafa-A and 74 Mafa-B haplotypes in this cohort, many of which were restricted to specific sample origins. We also characterized full-length MHC class I transcripts using Pacific Biosciences (PacBio) RS II single-molecule real-time (SMRT) sequencing. This technology allows for complete read-through of unfragmented MHC class I transcripts (~1100 bp in length), so no assembly is required to unambiguously resolve novel full-length sequences. Overall, we identified 311 total full-length transcripts in a subset of 72 cynomolgus macaques from these Chinese breeding facilities; 130 of these sequences were novel and an additional 115 extended existing short database sequences to span the complete open reading frame. This significantly expands the number of Mafa-A, Mafa-B, and Mafa-I full-length alleles in the official cynomolgus macaque MHC class I database. The PacBio technique described here represents a general method for full-length allele discovery and genotyping that can be extended to other complex immune loci such as MHC class II, killer immunoglobulin-like receptors, and Fc gamma receptors.


September 22, 2019  |  

Human and rhesus macaque KIR haplotypes defined by their transcriptomes.

The killer-cell Ig-like receptors (KIRs) play a central role in the immune recognition in infection, pregnancy, and transplantation through their interactions with MHC class I molecules. KIR genes display abundant copy number variation as well as high levels of polymorphism. As a result, it is challenging to characterize this structurally dynamic region. KIR haplotypes have been analyzed in different species using conventional characterization methods, such as Sanger sequencing and Roche/454 pyrosequencing. However, these methods are time-consuming and often failed to define complete haplotypes, or do not reach allele-level resolution. In addition, most analyses were performed on genomic DNA, and thus were lacking substantial information about transcription and its corresponding modifications. In this paper, we present a single-molecule real-time sequencing approach, using Pacific Biosciences Sequel platform to characterize the KIR transcriptomes in human and rhesus macaque (Macaca mulatta) families. This high-resolution approach allowed the identification of novel Mamu-KIR alleles, the extension of reported allele sequences, and the determination of human and macaque KIR haplotypes. In addition, multiple recombinant KIR genes were discovered, all located on contracted haplotypes, which were likely the result of chromosomal rearrangements. The relatively high number of contracted haplotypes discovered might be indicative of selection on small KIR repertoires and/or novel fusion gene products. This next-generation method provides an improved high-resolution characterization of the KIR cluster in humans and macaques, which eventually may aid in a better understanding and interpretation of KIR allele-associated diseases, as well as the immune response in transplantation and reproduction. Copyright © 2018 by The American Association of Immunologists, Inc.


September 22, 2019  |  

Long-term colonization dynamics of Enterococcus faecalis in implanted devices in research macaques.

Enterococcus faecalis is a common opportunistic pathogen that colonizes cephalic recording chambers (CRCs) of macaques used in cognitive neuroscience research. We previously characterized 15 E. faecalis strains isolated from macaques at the Massachusetts Institute of Technology (MIT) in 2011. The goal of this study was to examine how a 2014 protocol change prohibiting the use of antimicrobials within CRCs affected colonizing E. faecalis strains. We collected 20 E. faecalis isolates from 10 macaques between 2013 and 2017 for comparison to 4 isolates previously characterized in 2011 with respect to the sequence type (ST) distribution, antimicrobial resistance, biofilm formation, and changes in genes that might confer a survival advantage. ST4 and ST55 were predominant among the isolates characterized in 2011, whereas the less antimicrobial-resistant lineage ST48 emerged to dominance after 2013. Two macaques remained colonized by ST4 and ST55 strains for 5 and 4 years, respectively. While the antimicrobial resistance and virulence factors identified in these ST4 and ST55 strains remained relatively stable, we detected an increase in biofilm formation ability over time in both isolates. We also found that ST48 strains were typically robust biofilm formers, which could explain why this ST increased in prevalence. Finally, we identified mutations in the DNA mismatch repair genes mutS and mutL in separate ST55 and ST4 strains and confirmed that strains bearing these mutations displayed a hypermutator phenotype. The presence of a hypermutator phenotype may complicate future antimicrobial treatment for clinically relevant E. faecalis infections in macaques.IMPORTANCEEnterococcus faecalis is a common cause of health care-associated infections in humans, largely due to its ability to persist in the hospital environment, colonize patients, acquire antimicrobial resistance, and form biofilms. Understanding how enterococci evolve in health care settings provides insight into factors affecting enterococcal survival and persistence. Macaques used in neuroscience research have long-term cranial implants that, despite best practices, often become colonized by E. faecalis This provides a unique opportunity to noninvasively examine the evolution of enterococci on a long-term indwelling device. We collected E. faecalis strains from cephalic implants over a 7-year period and characterized the sequence type, antimicrobial resistance, virulence factors, biofilm production, and hypermutator phenotypes. Improved antimicrobial stewardship allowed a less-antimicrobial-resistant E. faecalis strain to predominate at the implant interface, potentially improving antimicrobial treatment outcomes if future clinical infections occur. Biofilm formation appears to play an important role in the persistence of the E. faecalis strains associated with these implants. Copyright © 2018 American Society for Microbiology.


September 21, 2019  |  

Characterization of multi-drug resistant Enterococcus faecalis isolated from cephalic recording chambers in research macaques (Macaca spp.).

Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6′)-aph(2″), aph(3′)-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.


July 7, 2019  |  

Molecular characterization of plasmid pMoma1of Moraxella macacae, a newly described bacterial pathogen of macaques.

We report the complete nucleotide sequence and characterization of a small cryptic plasmid of Moraxella macacae 0408225, a newly described bacterial species within the family Moraxellaceae and a causative agent of epistaxis in macaques. The complete nucleotide sequence of the plasmid pMoma1 was determined and found to be 5,375 bp in size with a GC content of 37.4 %. Computer analysis of the sequence data revealed five open reading frames encoding putative proteins of 54.4 kDa (ORF1), 17.6 kDa (ORF2), 13.3 kDa (ORF3), 51.6 kDa (ORF4), and 25.0 kDa (ORF5). ORF1, ORF2, and ORF3 encode putative proteins with high identity (72, 42, and 55 %, respectively) to mobilization proteins of plasmids found in other Moraxella species. ORF3 encodes a putative protein with similarity (about 40 %) to several plasmid replicase (RepA) proteins. The fifth open reading frames (ORF) was most similar to hypothetical proteins with unknown functions, although domain analysis of this sequence suggests it belongs to the Abi-like protein family. Upstream of the repA gene, a 470-bp intergenic region, was identified that contained an AT-rich section and two sets of tandem direct and indirect repeats, consistent with a putative origin of replication site. In contrast to other plasmids of Moraxella, the occurrence of pMoma1 in M. macacae isolates appears to be common as PCR testing of 14 clinical isolates from two different research institutions all contained the plasmid.


July 7, 2019  |  

The genomic sequence of lymphocryptovirus from cynomolgus macaque.

Lymphocryptoviruses such as Epstein-Barr virus (EBV) cause persistent infections in human and non-human primates, and suppression of the immune system can increase the risk of lymphocryptovirus (LCV)-associated tumor development in both human and non-human primates. To enable LCV infection as a non-clinical model to study effects of therapeutics on EBV immunity, we determined the genomic DNA sequence of the LCV from cynomolgus macaque, a species commonly used for non-clinical testing. Comparison to rhesus macaque LCV and human EBV sequences indicates that LCV from the cynomolgus macaque has the same genomic arrangement and a high degree of similarity in most genes, especially with rhesus macaque LCV. Genes showing lower similarity were those encoding proteins involved in latency and/or tumor promotion or immune evasion. The genomic sequence of LCV from cynomolgus macaque should aid the development of non-clinical tools for identifying therapeutics that impact LCV immunity and carry potential lymphoma risk. Copyright © 2015 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Structure and evolution of the filaggrin gene repeated region in primates

The evolutionary dynamics of repeat sequences is quite complex, with some duplicates never having differentiated from each other. Two models can explain the complex evolutionary process for repeated genes—concerted and birth-and-death, of which the latter is driven by duplications maintained by selection. Copy number variations caused by random duplications and losses in repeat regions may modulate molecular pathways and therefore affect phenotypic characteristics in a population, resulting in individuals that are able to adapt to new environments. In this study, we investigated the filaggrin gene (FLG), which codes for filaggrin—an important component of the outer layers of mammalian skin—and contains tandem repeats that exhibit copy number variation between and within species. To examine which model best fits the evolutionary pathway for the complete tandem repeats within a single exon of FLG, we determined the repeat sequences in crab-eating macaque (Macaca fascicularis), orangutan (Pongo abelii), gorilla (Gorilla gorilla), and chimpanzee (Pan troglodytes) and compared these with the sequence in human (Homo sapiens).


July 7, 2019  |  

Complete genome sequences of Mycobacterium kansasii strains isolated from rhesus macaques.

Mycobacterium kansasii is a nontuberculous mycobacterium. It causes opportunistic infections with pulmonary and extrapulmonary manifestations. We report here the complete genome sequences of two M. kansasii strains isolated from rhesus macaques. We performed genome comparisons with human and environmental isolates of M. kansasii to assess the genomic diversity of this species. Copyright © 2017 Panda et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.