July 19, 2019  |  

Comparative genomics reveals the diversity of restriction-modification systems and DNA methylation sites in Listeria monocytogenes.

Listeria monocytogenes is a bacterial pathogen that is found in a wide variety of anthropogenic and natural environments. Genome sequencing technologies are rapidly becoming a powerful tool in facilitating our understanding of how genotype, classification phenotypes, and virulence phenotypes interact to predict the health risks of individual bacterial isolates. Currently, 57 closed L. monocytogenes genomes are publicly available, representing three of the four phylogenetic lineages, and they suggest that L. monocytogenes has high genomic synteny. This study contributes an additional 15 closed L. monocytogenes genomes that were used to determine the associations between the genome and methylome with host invasion magnitude. In contrast to previous findings, large chromosomal inversions and rearrangements were detected in five isolates at the chromosome terminus and within rRNA genes, including a previously undescribed inversion within rRNA-encoding regions. Each isolate’s epigenome contained highly diverse methyltransferase recognition sites, even within the same serotype and methylation pattern. Eleven strains contained a single chromosomally encoded methyltransferase, one strain contained two methylation systems (one system on a plasmid), and three strains exhibited no methylation, despite the occurrence of methyltransferase genes. In three isolates a new, unknown DNA modification was observed in addition to diverse methylation patterns, accompanied by a novel methylation system. Neither chromosome rearrangement nor strain-specific patterns of epigenome modification observed within virulence genes were correlated with serotype designation, clonal complex, or in vitro infectivity. These data suggest that genome diversity is larger than previously considered in L. monocytogenes and that as more genomes are sequenced, additional structure and methylation novelty will be observed in this organism.Listeria monocytogenes is the causative agent of listeriosis, a disease which manifests as gastroenteritis, meningoencephalitis, and abortion. Among Salmonella, Escherichia coli, Campylobacter, and Listeria-causing the most prevalent foodborne illnesses-infection by L. monocytogenes carries the highest mortality rate. The ability of L. monocytogenes to regulate its response to various harsh environments enables its persistence and transmission. Small-scale comparisons of L. monocytogenes focusing solely on genome contents reveal a highly syntenic genome yet fail to address the observed diversity in phenotypic regulation. This study provides a large-scale comparison of 302 L. monocytogenes isolates, revealing the importance of the epigenome and restriction-modification systems as major determinants of L. monocytogenes phylogenetic grouping and subsequent phenotypic expression. Further examination of virulence genes of select outbreak strains reveals an unprecedented diversity in methylation statuses despite high degrees of genome conservation. Copyright © 2017 American Society for Microbiology.

July 7, 2019  |  

Genome sequences of the Listeria ivanovii subsp. ivanovii type strain and two Listeria ivanovii subsp. londoniensis strains.

We present the complete genomes of Listeria ivanovii subsp. ivanovii WSLC 3010 (ATCC 19119(T)), Listeria ivanovii subsp. londoniensis WSLC 30151 (SLCC 8854), and Listeria ivanovii subsp. londoniensis WSLC 30167 (SLCC 6032), representing the type strain of the species and two strains of the same serovar but different properties, respectively. Copyright © 2015 Hupfeld et al.

July 7, 2019  |  

Bacteriophage P70: unique morphology and unrelatedness to other Listeria bacteriophages.

Listeria monocytogenes is an important food-borne pathogen, and its bacteriophages find many uses in detection and biocontrol of its host. The novel broad-host-range virulent phage P70 has a unique morphology with an elongated capsid. Its genome sequence was determined by a hybrid sequencing strategy employing Sanger and PacBio techniques. The P70 genome contains 67,170 bp and 119 open reading frames (ORFs). Our analyses suggest that P70 represents an archetype of virus unrelated to other known Listeria bacteriophages.

July 7, 2019  |  

Complete genome sequences of 12 isolates of Listeria monocytogenes belonging to serotypes 1/2a, 1/2b, and 4b obtained from food products and food-processing environments in Canada.

Listeria monocytogenes is the etiological agent for an often fatal foodborne illness known as listeriosis. Here, we present the complete genome sequences of 12 L. monocytogenes isolates representing the three most common serotypes of this pathogen (1/2a, 1/2b, and 4b), collected in Canada from different food products and environmental sources.© Crown copyright 2017.

July 7, 2019  |  

Whole genome and core genome multilocus sequence typing and single nucleotide polymorphism analyses of Listeria monocytogenes associated with an outbreak linked to cheese, United States, 2013.

Epidemiological findings of a listeriosis outbreak in 2013 implicated Hispanic-style cheese produced by Company A, and pulsed-field gel electrophoresis (PFGE) and whole genome sequencing (WGS) were performed on clinical isolates and representative isolates collected from Company A cheese and environmental samples during the investigation. The results strengthened the evidence for cheese as the vehicle. Surveillance sampling and WGS three months later revealed that the equipment purchased by Company B from Company A yielded an environmental isolate highly similar to all outbreak isolates. The whole genome and core genome multilocus sequence typing and single nucleotide polymorphism (SNP) analyses were compared to demonstrate the maximum discriminatory power obtained by using multiple analyses, which were needed to differentiate outbreak-associated isolates from a PFGE-indistinguishable isolate collected in a non-implicated food source in 2012. This unrelated isolate differed from the outbreak isolates by only 7 to 14 SNPs, and as a result, minimum spanning tree by the whole genome analyses and certain variant calling approach and phylogenetic algorithm for core genome-based analyses could not provide the differentiation between unrelated isolates. Our data also suggest that SNP/allele counts should always be combined with WGS clustering generated by phylogenetically meaningful algorithms on sufficient number of isolates, and SNP/allele threshold alone is not sufficient evidence to delineate an outbreak. The putative prophages were conserved across all the outbreak isolates. All outbreak isolates belonged to clonal complex 5 and serotype 1/2b, had an identical inlA sequence, which did not have premature stop codons.IMPORTANCE In this outbreak, multiple analytical approaches were used for maximum discriminatory power. A PFGE-matched, epidemiologically unrelated isolate had high genetic similarity to the outbreak-associated isolates, with as few as only 7 SNP differences. Therefore, the SNP/allele threshold should not be used as the only evidence to define the scope of an outbreak. It is critical that the SNP/allele counts be complemented by WGS clustering generated by phylogenetically meaningful algorithms to distinguish outbreak-associated isolates from epidemiologically unrelated isolates. Careful selection of a variant calling approach and phylogenetic algorithm is critical for core genome-based analyses. The whole genome-based analyses were able to construct the highly resolved phylogeny needed to support the findings of the outbreak investigation. Ultimately, epidemiologic evidence and multiple WGS analyses should be combined to increase the confidence in outbreak investigations. Copyright © 2017 Chen et al.

July 7, 2019  |  

Full-genome sequence of Listeria monocytogenes strain H34, isolated from a newborn with sepsis in Uruguay.

The foodborne pathogen Listeria monocytogenes causes severe disease mainly in the vulnerable populations of the young, old, pregnant, and immunocompromised. Here, we present the genome sequence of L. monocytogenes H34, a serotype 1/2b, lineage I, sequence type 489 (ST489) strain, isolated from a neonatal sepsis case in Uruguay. Copyright © 2017 Muchaamba et al.

July 7, 2019  |  

Benzalkonium tolerance genes and outcome in Listeria monocytogenes meningitis.

Listeria monocytogenes is a food-borne pathogen that can cause meningitis. The listerial genotype ST6 has been linked to increasing rates of unfavourable outcome over time. We investigated listerial genetic variation and the relation with clinical outcome in meningitis.We sequenced 96 isolates from adults with listerial meningitis included in two prospective nationwide cohort studies by whole genome sequencing, and evaluated associations between bacterial genetic variation and clinical outcome. We validated these results by screening listerial genotypes of 445 cerebrospinal fluid and blood isolates from patients over a 30-year period from the Dutch national surveillance cohort.We identified a bacteriophage, phiLMST6 co-occurring with a novel plasmid, pLMST6, in ST6 isolates to be associated with unfavourable outcome in patients (p 2.83e-05). The plasmid carries a benzalkonium chloride tolerance gene, emrC, conferring decreased susceptibility to disinfectants used in the food-processing industry. Isolates harbouring emrC were growth inhibited at higher levels of benzalkonium chloride (median 60 mg/L versus 15 mg/L; p <0.001), and had higher MICs for amoxicillin and gentamicin compared with isolates without emrC (both p <0.001). Transformation of pLMST6 into naive strains led to benzalkonium chloride tolerance and higher MICs for gentamicin.These results show that a novel plasmid, carrying the efflux transporter emrC, is associated with increased incidence of ST6 listerial meningitis in the Netherlands. Suggesting increased disease severity, our findings warrant consideration of disinfectants used in the food-processing industry that select for resistance mechanisms and may, inadvertently, lead to increased risk of poor disease outcome. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

July 7, 2019  |  

Complete circular genome sequence and temperature independent adaptation to anaerobiosis of Listeria weihenstephanensis DSM 24698.

The aim of this study was to analyze the adaptation of the environmental Listeria weihenstephanensis DSM 24698 to anaerobiosis. The complete circular genome sequence of this species is reported and the adaptation of L. weihenstephanensis DSM 24698 to oxygen availability was investigated by global transcriptional analyses via RNAseq at 18 and 34°C. A list of operons was created based on the transcriptional data. Forty-two genes were upregulated anaerobically and 62 genes were downregulated anaerobically. The oxygen dependent gene expression of selected genes was further validated via qPCR. Many of the differentially regulated genes encode metabolic enzymes indicating broad metabolic adaptations with respect to oxygen availability. Genes showing the strongest oxygen-dependent adaption encoded nitrate (narGHJI) and nitrite (nirBD) reductases. Together with the observation that nitrate supported anaerobic growth, these data indicate that L. weihenstephanensis DSM 24698 performs anaerobic nitrate respiration. The wide overlap between the oxygen-dependent transcriptional regulation at 18 and 34°C suggest that temperature does not play a key role in the oxygen-dependent transcriptional regulation of L. weihenstephanensis DSM 24698.

July 7, 2019  |  

Spontaneous loss of virulence in natural populations of Listeria monocytogenes.

The pathogenesis of Listeria monocytogenes depends on the ability of this bacterium to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO). Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for L. monocytogenes virulence. Here, we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in L. monocytogenes Sixty nonhemolytic isolates were identified among a collection of 57,820 confirmed L. monocytogenes strains isolated from a variety of sources (0.1%). In most cases (56/60; 93.3%), the nonhemolytic phenotype resulted from nonsense, missense, or frameshift mutations in prfA Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function (PrfA(-)/LLO(-)) mutants belonged to phylogenetically diverse clades of L. monocytogenes, and most were identified among nonclinical strains (57/60). Consistent with the rare occurrence of loss-of-virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA(-)/LLO(-) mutational events in L. monocytogenes lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen. Copyright © 2017 Maury et al.

July 7, 2019  |  

Heat resistance mediated by pLM58 plasmid-borne ClpL in Listeria monocytogenes.

Listeria monocytogenes is one of the most heat-resistant non-spore-forming food-borne pathogens and poses a notable risk to food safety, particularly when mild heat treatments are used in food processing and preparation. While general heat stress properties and response mechanisms of L. monocytogenes have been described, accessory mechanisms providing particular L. monocytogenes strains with the advantage of enhanced heat resistance are unknown. Here, we report plasmid-mediated heat resistance of L. monocytogenes for the first time. This resistance is mediated by the ATP-dependent protease ClpL. We tested the survival of two wild-type L. monocytogenes strains-both of serotype 1/2c, sequence type ST9, and high sequence identity-at high temperatures and compared their genome composition in order to identify genetic mechanisms involved in their heat survival phenotype. L. monocytogenes AT3E was more heat resistant (0.0 CFU/ml log10 reduction) than strain AL4E (1.4 CFU/ml log10 reduction) after heating at 55°C for 40 min. A prominent difference in the genome compositions of the two strains was a 58-kb plasmid (pLM58) harbored by the heat-resistant AT3E strain, suggesting plasmid-mediated heat resistance. Indeed, plasmid curing resulted in significantly decreased heat resistance (1.1 CFU/ml log10 reduction) at 55°C. pLM58 harbored a 2,115-bp open reading frame annotated as an ATP-dependent protease (ClpL)-encoding clpL gene. Introducing the clpL gene into a natively heat-sensitive L. monocytogenes strain (1.2 CFU/ml log10 reduction) significantly increased the heat resistance of the recipient strain (0.4 CFU/ml log10 reduction) at 55°C. Plasmid-borne ClpL is thus a potential predictor of elevated heat resistance in L. monocytogenes. IMPORTANCEListeria monocytogenes is a dangerous food pathogen causing the severe illness listeriosis that has a high mortality rate in immunocompromised individuals. Although destroyed by pasteurization, L. monocytogenes is among the most heat-resistant non-spore-forming bacteria. This poses a risk to food safety, as listeriosis is commonly associated with ready-to-eat foods that are consumed without thorough heating. However, L. monocytogenes strains differ in their ability to survive high temperatures, and comprehensive understanding of the genetic mechanisms underlying these differences is still limited. Whole-genome-sequence analysis and phenotypic characterization allowed us to identify a novel plasmid, designated pLM58, and a plasmid-borne ATP-dependent protease (ClpL), which mediated heat resistance in L. monocytogenes. As the first report on plasmid-mediated heat resistance in L. monocytogenes, our study sheds light on the accessory genetic mechanisms rendering certain L. monocytogenes strains particularly capable of surviving high temperatures-with plasmid-borne ClpL being a potential predictor of elevated heat resistance.

July 7, 2019  |  

Genome sequences of five nonvirulent Listeria monocytogenes serovar 4 strains.

We present the complete genome sequences of five nonpathogenicListeria monocytogenesserovar 4 strains: WSLC 1018 (4e), 1019 (4c), 1020 (4a), 1033 (4d), and 1047 (4d). These sequences may help to uncover genes involved in the synthesis of the serovar antigens-phenotypic determinants of virulence deemed clinically relevant. Copyright © 2016 Sumrall et al.

July 7, 2019  |  

The absence of a mature cell wall sacculus in stable Listeria monocytogenes L-form cells is independent of peptidoglycan synthesis.

L-forms are cell wall-deficient variants of otherwise walled bacteria that maintain the ability to survive and proliferate in absence of the surrounding peptidoglycan sacculus. While transient or unstable L-forms can revert to the walled state and may still rely on residual peptidoglycan synthesis for multiplication, stable L-forms cannot revert to the walled form and are believed to propagate in the complete absence of peptidoglycan. L-forms are increasingly studied as a fundamental biological model system for cell wall synthesis. Here, we show that a stable L-form of the intracellular pathogen Listeria monocytogenes features a surprisingly intact peptidoglycan synthesis pathway including glycosyl transfer, in spite of the accumulation of multiple mutations during prolonged passage in the cell wall-deficient state. Microscopic and biochemical analysis revealed the presence of peptidoglycan precursors and functional glycosyl transferases, resulting in the formation of peptidoglycan polymers but without the synthesis of a mature cell wall sacculus. In conclusion, we found that stable, non-reverting L-forms, which do not require active PG synthesis for proliferation, may still continue to produce aberrant peptidoglycan.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.