Menu
July 7, 2019  |  

Coexistence of blaOXA-48 and truncated blaNDM-1 on different plasmids in a Klebsiella pneumoniae isolate in China.

Objectives: To describe the genetic environment, transferability, and antibiotic susceptibility of one clinical Klebsiella pneumoniae isolate harboring both blaOXA-48 and blaNDM-1 on different plasmids from a Chinese hospital. Methods: The isolate was subjected to antimicrobial susceptibility testing and multilocus sequence typing using Etest and PCR. The plasmids harboring blaOXA-48 and blaNDM-1 were analyzed through conjugation experiments, S1-nuclease pulsed-field gel electrophoresis, and hybridization with specific probes. Plasmid DNA was sequenced using Pacbio RS II and annotated using RAST. Results:K. pneumoniae RJ119, carrying both blaOXA-48 and blaNDM-1, was resistant to almost all carbapenems, cephalosporins, fluoroquinolone, and aminoglycosides and belonged to ST307. blaOXA-48 was located on a 61,748-bp IncL/M conjugative plasmid, which displayed overall nucleotide identity (99%) to pKPN-E1-Nr.7. blaNDM-1 was located on a 335,317-bp conjugative plasmid, which was a fusion of a blaNDM-1-harboring InA/C plasmid pNDM-US (140,825 bp, 99% identity) and an IncFIB plasmid pKPN-c22 (178,563 bp, 99% identity). The transconjugant RJ119-1 harboring blaNDM-1 was susceptible to carbapenem, and there was an insertion of IS10 into the blaNDM-1 gene. Conclusion: This is the first report of the coexistence of blaOXA-48 and blaNDM-1 in one K. pneumoniae clinical isolate in China. OXA-48 in RJ119 contributed to the majority to its high resistance to carbapenems, whereas NDM-1 remained unexpressed, most likely due to the insertion of IS10. Our results provide new insight for the relationship between genetic diagnosis and clinical treatment. They also indicate that increased surveillance of blaOXA-48 is urgently needed in China.


July 7, 2019  |  

Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncX3-type plasmid harboring a truncated Tn4401a.

Over a 5-month period between the end of June and the beginning of November in 2015, a KPC-producing Enterobacteriaceae outbreak occurred in a general hospital in Busan, South Korea, being associated with a total of 50 clinical isolates from 47 patients. Multilocus sequence typing and pulsed-field gel electrophoresis were carried out for strain typing and whole-genome sequencing was performed to characterize the plasmids. A clonal spread of K. pneumoniae sequence type 307 (ST307) carrying a self-transferable IncX3-type plasmid harboring blaKPC-2 was responsible for the outbreak. Sporadic emergence of K. pneumoniae ST697 carrying an IncFII-type plasmid and a ST11 isolate harboring a small plasmid devoid of any known origin of replication were observed to be associated with blaKPC-3, but no further dissemination of these strains was identified. The results indicated a healthcare-associated infection associated with a blaKPC-harboring plasmid dissemination and a clonal spread of KPC-producing Enterobacteriaceae. Copyright © 2016 Elsevier Inc. All rights reserved.


July 7, 2019  |  

Population genomic analysis of 1,777 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates, Houston, Texas: unexpected abundance of clonal group 307.

Klebsiella pneumoniae is a major human pathogen responsible for high morbidity and mortality rates. The emergence and spread of strains resistant to multiple antimicrobial agents and documented large nosocomial outbreaks are especially concerning. To develop new therapeutic strategies for K. pneumoniae, it is imperative to understand the population genomic structure of strains causing human infections. To address this knowledge gap, we sequenced the genomes of 1,777 extended-spectrum beta-lactamase-producing K. pneumoniae strains cultured from patients in the 2,000-bed Houston Methodist Hospital system between September 2011 and May 2015, representing a comprehensive, population-based strain sample. Strains of largely uncharacterized clonal group 307 (CG307) caused more infections than those of well-studied epidemic CG258. Strains varied markedly in gene content and had an extensive array of small and very large plasmids, often containing antimicrobial resistance genes. Some patients with multiple strains cultured over time were infected with genetically distinct clones. We identified 15 strains expressing the New Delhi metallo-beta-lactamase 1 (NDM-1) enzyme that confers broad resistance to nearly all beta-lactam antibiotics. Transcriptome sequencing analysis of 10 phylogenetically diverse strains showed that the global transcriptome of each strain was unique and highly variable. Experimental mouse infection provided new information about immunological parameters of host-pathogen interaction. We exploited the large data set to develop whole-genome sequence-based classifiers that accurately predict clinical antimicrobial resistance for 12 of the 16 antibiotics tested. We conclude that analysis of large, comprehensive, population-based strain samples can assist understanding of the molecular diversity of these organisms and contribute to enhanced translational research. IMPORTANCEKlebsiella pneumoniae causes human infections that are increasingly difficult to treat because many strains are resistant to multiple antibiotics. Clonal group 258 (CG258) organisms have caused outbreaks in health care settings worldwide. Using a comprehensive population-based sample of extended-spectrum beta-lactamase (ESBL)-producing K. pneumoniae strains, we show that a relatively uncommon clonal type, CG307, caused the plurality of ESBL-producing K. pneumoniae infections in our patients. We discovered that CG307 strains have been abundant in Houston for many years. As assessed by experimental mouse infection, CG307 strains were as virulent as pandemic CG258 strains. Our results may portend the emergence of an especially successful clonal group of antibiotic-resistant K. pneumoniae. Copyright © 2017 Long et al.


July 7, 2019  |  

Genomic epidemiology of NDM-1-encoding plasmids in Latin American clinical isolates reveals insights into the evolution of multidrug resistance

Bacteria that produce the broad-spectrum Carbapenem antibiotic New Delhi Metallo-ß-lactamase (NDM) place a burden on health care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this antibiotic resistance mechanism. Although it is believed that the associated resistance gene blaNDM-1 originated in Acinetobacter spp., the role of Enterobacteriaceae in its dissemination remains unclear. In this study, we used whole genome sequencing to investigate the dissemination dynamics of blaNDM-1-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico (Providencia rettgeri, Klebsiella pneumoniae, and Acinetobacter baumannii) as well as six representative NDM-1-positive Escherichia coli transconjugants. Additionally, the plasmids from three representative P. rettgeri isolates were sequenced by PacBio sequencing and finished. Our results demonstrate the presence of previously reported plasmids from K. pneumoniae and A. baumannii in different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were also identified in P. rettgeri from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive P. rettgeri from distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered. Finally, we detected a relationship between plasmids present in P. rettgeri and plasmids from A. baumannii and K. pneumoniae. Overall, our findings suggest a Russian doll model for the dissemination of blaNDM-1 in Latin America, with P. rettgeri playing a central role in this process, and reveal new insights into the evolution and dissemination of plasmids carrying such antibiotic resistance genes.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Emergence and evolution of multidrug-resistant Klebsiella pneumoniae with both blaKPC and blaCTX-M integrated in the chromosome.

The extended-spectrum-ß-lactamase (ESBL)- and Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae represent serious and urgent threats to public health. In a retrospective study of multidrug-resistant K. pneumoniae, we identified three clinical isolates, CN1, CR14, and NY9, carrying both blaCTX-M and blaKPC genes. The complete genomes of these three K. pneumoniae isolates were de novo assembled by using both short- and long-read whole-genome sequencing. In CR14 and NY9, blaCTX-M and blaKPC were carried on two different plasmids. In contrast, CN1 had one copy of blaKPC-2 and three copies of blaCTX-M-15 integrated in the chromosome, for which the blaCTX-M-15 genes were linked to an insertion sequence, ISEcp1, whereas the blaKPC-2 gene was in the context of a Tn4401a transposition unit conjugated with a PsP3-like prophage. Intriguingly, downstream of the Tn4401a-blaKPC-2-prophage genomic island, CN1 also carried a clustered regularly interspaced short palindromic repeat (CRISPR)-cas array with four spacers targeting a variety of K. pneumoniae plasmids harboring antimicrobial resistance genes. Comparative genomic analysis revealed that there were two subtypes of type I-E CRISPR-cas in K. pneumoniae strains and suggested that the evolving CRISPR-cas, with its acquired novel spacer, induced the mobilization of antimicrobial resistance genes from plasmids into the chromosome. The integration and dissemination of multiple copies of blaCTX-M and blaKPC from plasmids to chromosome depicts the complex pandemic scenario of multidrug-resistant K. pneumoniae Additionally, the implications from this study also raise concerns for the application of a CRISPR-cas strategy against antimicrobial resistance. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Virulence and genomic feature of a virulent Klebsiella pneumoniae sequence type 14 strain of serotype K2 harboring blaNDM-5 in China.

The objective of this study was to reveal the molecular mechanism involved in carbapenem resistance and virulence of a K2 Klebsiella pneumoniae clinical isolate 24835. The virulence of the strain was determined by in vitro and in vivo methods. The de novo whole-genome sequencing technology and molecular biology methods were used to analyze the genomic features associated with the carbapenem resistance and virulence of K. pneumoniae 24835. Strain 24835 was highly resistant to carbapenems and belonged to ST14, exhibited hypermucoviscous and unique K2-aerobactin-kfu-rmpA positive phenotype. As the only carbapenemase gene in strain 24835, blaNDM-5 was located on a 46-kb IncX3 self-transmissible plasmid, which is a very close relation of pNDM-MGR194 from India. Genetic context of blaNDM-5 in strain 24835 was closely related to those on IncX3 plasmids in various Enterobacteriaceae species in China. The combination of multiple virulence genes may work together to confer the relative higher virulence in K. pneumoniae 24835. Significantly increased resistance to serum killing and mice mortality were found in the virulent New Delhi metallo-ß-lactamase (NDM)-producing K. pneumoniae strain compared to the other NDM-producing K. pneumoniae strain. Our study provides basic information of phenotypic and genomic features of K. pneumoniae 24835, a strain displaying carbapenem resistance and relatively high level of virulence. These findings are concerning for the potential of NDM-like genes to disseminate among virulent K. pneumoniae isolates.


July 7, 2019  |  

Metabolic diversity of the emerging pathogenic lineages of Klebsiella pneumoniae.

Multidrug resistant and hypervirulent clones of Klebsiella pneumoniae are emerging pathogens. To understand the association between genotypic and phenotypic diversity in this process, we combined genomic, phylogenomic and phenotypic analysis of a diverse set of K. pneumoniae and closely related species. These species were able to use an unusually large panel of metabolic substrates for growth, many of which were shared between all strains. We analysed the substrates used by only a fraction of the strains, identified some of their genetic basis, and found that many could not be explained by the phylogeny of the strains. Puzzlingly, few traits were associated with the ecological origin of the strains. One noticeable exception was the ability to use D-arabinose, which was much more frequent in hypervirulent strains. The broad carbon and nitrogen core metabolism of K. pneumoniae might contribute to its ability to thrive in diverse environments. Accordingly, even the hypervirulent and multidrug resistant clones have the metabolic signature of ubiquitous bacteria. The apparent few metabolic differences between hypervirulent, multi-resistant and environmental strains may favour the emergence of dual-risk strains that combine resistance and hypervirulence.© 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.


July 7, 2019  |  

Structural modification of LPS in colistin-resistant, KPC-producing Klebsiella pneumoniae.

Colistin resistance in Klebsiella pneumoniae typically involves inactivation or mutations of chromosomal genes mgrB, pmrAB or phoPQ, but data regarding consequent modifications of LPS are limited.To examine the sequences of chromosomal loci implicated in colistin resistance and the respective LPS-derived lipid A profiles using 11 pairs of colistin-susceptible and -resistant KPC-producing K. pneumoniae clinical strains.The strains were subjected to high-throughput sequencing with Illumina HiSeq. The mgrB gene was amplified by PCR and sequenced. Lipid profiles were determined using MALDI-TOF MS.All patients were treated with colistimethate prior to the isolation of colistin-resistant strains (MIC >2?mg/L). Seven of 11 colistin-resistant strains had deletion or insertional inactivation of mgrB. Three strains, including one with an mgrB deletion, had non-synonymous pmrB mutations associated with colistin resistance. When analysed by MALDI-TOF MS, all colistin-resistant strains generated mass spectra containing ions at m/z 1955 and 1971, consistent with addition of 4-amino-4-deoxy-l-arabinose (Ara4N) to lipid A, whereas only one of the susceptible strains displayed this lipid A phenotype.The pathway to colistin resistance in K. pneumoniae primarily involves lipid A modification with Ara4N in clinical settings.© The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.


July 7, 2019  |  

Resistance to ceftazidime-avibactam is due to tranposition of KPC in a porin-deficient strain of Klebsiella pneumoniae with increased efflux activity.

Ceftazidime-avibactam is an antibiotic with activity against serine beta-lactamases, including Klebsiella pneumoniae carbapenemase (KPC). Recently, reports have emerged of KPC-producing isolates resistant to this antibiotic, including a report of a wild-type KPC-3 producing sequence type 258 Klebsiella pneumoniae that was resistant to ceftazidime-avibactam. We describe a detailed analysis of this isolate, in the context of two other closely related KPC-3 producing isolates, recovered from the same patient. Both isolates encoded a nonfunctional OmpK35, whereas we demonstrate that a novel T333N mutation in OmpK36, present in the ceftazidime-avibactam resistant isolate, reduced the activity of this porin and impacted ceftazidime-avibactam susceptibility. In addition, we demonstrate that the increased expression of blaKPC-3 and blaSHV-12 observed in the ceftazidime-avibactam-resistant isolate was due to transposition of the Tn4401 transposon harboring blaKPC-3 into a second plasmid, pIncX3, which also harbored blaSHV-12, ultimately resulting in a higher copy number of blaKPC-3 in the resistant isolate. pIncX3 plasmid from the ceftazidime-avibactam resistant isolate, conjugated into a OmpK35/36-deficient K. pneumoniae background that harbored a mutation to the ramR regulator of the acrAB efflux operon recreated the ceftazidime-avibactam-resistant MIC of 32 µg/ml, confirming that this constellation of mutations is responsible for the resistance phenotype. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Dissemination and characteristics of a novel plasmid-encoded carbapenem-hydrolyzing class D beta-lactamase, OXA-436 from four patients involving six different hospitals in Denmark.

The diversity of OXA-48-like carbapenemases is continually expanding. In this study, we describe the dissemination and characteristics of a novel carbapenem-hydrolyzing class D carbapenemase (CHDL) named OXA-436. In total, six OXA-436-producing Enterobacteriaceae isolates including Enterobacter asburiae (n=3), Citrobacter freundii (n=2) and Klebsiella pneumoniae (n=1) were identified in four patients in the period between September 2013 and April 2015. All three species of OXA-436-producing Enterobacteriaceae were found in one patient. The amino acid sequence of OXA-436 showed 90.4-92.8% identity to other acquired OXA-48-like variants. Expression of OXA-436 in Escherichia coli and kinetic analysis of purified OXA-436 revealed an activity profile similar to OXA-48 and OXA-181 with activity against penicillins including temocillin, limited or no activity against extended-spectrum cephalosporins and activity against carbapenems. The blaOXA-436 gene was located on a conjugative ~314 kb IncHI2/IncHI2A plasmid belonging to pMLST ST1, in a region surrounded by chromosomal genes previously identified adjacent to blaOXA-genes in Shewanella spp. In conclusion, OXA-436 is a novel CHDL with similar functional properties as OXA-48-like CHDLs. The described geographical spread among different Enterobacteriaceae and plasmid location of blaOXA-436 illustrates its potential for further dissemination. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

A novel Tn1696-like composite transposon (Tn6404) harboring bla IMP-4 in a Klebsiella pneumoniae isolate carrying a rare ESBL gene bla SFO-1.

Genetic determinants of a clinical Klebsiella pneumoniae isolate (KP1814) coproducing IMP-4 and a rare ESBL gene SFO-1 was investigated. KP1814 belongs to a novel sequence type (ST) assigned to ST2270. WGS identified four circular DNA sequences in KP1814, including two multidrug-resistance (MDR) plasmids, one virulence plasmid, and one circular form. The MDR plasmid pKP1814-1 (299.9 Kb) is untypeable, and carries two large mosaic multiresistance regions (MRRs). bla SFO-1 and bla IMP-4 co-exists on MRR1, and bla SFO-1 is associated with an IS/Tn-independent genetic context. bla IMP-4 is carried by a novel In804-like integron (intlI-bla IMP-4-Kl.pn.I3-qacG2-aacA4-catB3?) associated with a novel Tn1696-like transposon (designed Tn6404) flanked by IS5075. The other MDR plasmid pKP1814-3 is a 95,701-bp IncFII plasmid, and is a hybrid of a Shigella flexneri plasmid pSF07201 and an E. coli plasmid pCA08. All resistance genes of pKP1814-3 were detected in a ~16-kb IS26-flanked composite transposon carried by a Tn5396 transposon. The circular form (18.3 Kb) was composed of two parts belonging to pKP1814-1 and pKP1814-3, respectively. The plasmid pKP1814-2, carrying multiple virulence factors, encodes IncFIBK and IncFIIK replicons with a size of 187,349?bp. The coexistence of MDR and virulence plasmids largely enhances the bacterial fitness in the host and environment.


July 7, 2019  |  

A blaOXA-181-harbouring multi-resistant ST147 Klebsiella pneumoniae isolate from Pakistan that represent an intermediate stage towards pan-drug resistance.

Carbapenem resistant Klebsiella pneumoniae (CR-KP) infections are an ever-increasing global issue, especially in the Indian subcontinent. Here we report genetic insight into a blaOXA-181 harbouring Klebsiella pneumoniae, belonging to the pandemic lineage ST147, that represents an intermediate stage towards pan-drug resistance. The CR-KP isolate DA48896 was isolated from a patient from Pakistan and was susceptible only to tigecycline and colistin. It harboured blaOXA-181 and was assigned to sequence type ST147. Analysis from whole genome sequencing revealed a very high sequence similarity to the previously sequenced pan-resistant K. pneumoniae isolate MS6671 from the United Arab Emirates. The two isolates are very closely related with only 46 chromosomal nucleotide differences, 14 indels and differences in plasmid content. Both carry a substantial number of plasmid-borne and chromosomally encoded resistance determinants. Interestingly, the two differences in susceptibility between the isolates could be attributed to DA48896 lacking an insertion of blaOXA-181 into the mgrB gene that results in colistin resistance in MS6671 and SNPs affecting AcrAB efflux pump expression likely to result in tigecycline resistance. These differences between the otherwise very similar isolates indicate that strong selection has occurred for resistance towards these last-resort drugs and illustrates the trajectory of resistance evolution of OXA-181-producing versions of the ST147 international risk clone.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.