September 22, 2019  |  

Exploiting single-molecule transcript sequencing for eukaryotic gene prediction.

We develop a method to predict and validate gene models using PacBio single-molecule, real-time (SMRT) cDNA reads. Ninety-eight percent of full-insert SMRT reads span complete open reading frames. Gene model validation using SMRT reads is developed as automated process. Optimized training and prediction settings and mRNA-seq noise reduction of assisting Illumina reads results in increased gene prediction sensitivity and precision. Additionally, we present an improved gene set for sugar beet (Beta vulgaris) and the first genome-wide gene set for spinach (Spinacia oleracea). The workflow and guidelines are a valuable resource to obtain comprehensive gene sets for newly sequenced genomes of non-model eukaryotes.


September 21, 2019  |  

A distinct and genetically diverse lineage of the hybrid fungal pathogen Verticillium longisporum population causes stem striping in British oilseed rape.

Population genetic structures illustrate evolutionary trajectories of organisms adapting to differential environmental conditions. Verticillium stem striping disease on oilseed rape was mainly observed in continental Europe, but has recently emerged in the United Kingdom. The disease is caused by the hybrid fungal species Verticillium longisporum that originates from at least three separate hybridization events, yet hybrids between Verticillium progenitor species A1 and D1 are mainly responsible for Verticillium stem striping. We reveal a hitherto un-described dichotomy within V. longisporum lineage A1/D1 that correlates with the geographic distribution of the isolates with an ‘A1/D1 West’ and an ‘A1/D1 East’ cluster. Genome comparison between representatives of the A1/D1 West and East clusters excluded population distinctiveness through separate hybridization events. Remarkably, the A1/D1 West population that is genetically more diverse than the entire A1/D1 East cluster caused the sudden emergence of Verticillium stem striping in the UK, whereas in continental Europe Verticillium stem striping is predominantly caused by the more genetically uniform A1/D1 East population. The observed genetic diversity of the A1/D1 West population argues against a recent introduction of the pathogen into the UK, but rather suggests that the pathogen previously established in the UK and remained latent or unnoticed as oilseed rape pathogen until recently.© 2017 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.


July 19, 2019  |  

A mobile pathogenicity chromosome in Fusarium oxysporum for infection of multiple cucurbit species.

The genome of Fusarium oxysporum (Fo) consists of a set of eleven ‘core’ chromosomes, shared by most strains and responsible for housekeeping, and one or several accessory chromosomes. We sequenced a strain of Fo f.sp. radicis-cucumerinum (Forc) using PacBio SMRT sequencing. All but one of the core chromosomes were assembled into single contigs, and a chromosome that shows all the hallmarks of a pathogenicity chromosome comprised two contigs. A central part of this chromosome contains all identified candidate effector genes, including homologs of SIX6, SIX9, SIX11 and SIX 13. We show that SIX6 contributes to virulence of Forc. Through horizontal chromosome transfer (HCT) to a non-pathogenic strain, we also show that the accessory chromosome containing the SIX gene homologs is indeed a pathogenicity chromosome for cucurbit infection. Conversely, complete loss of virulence was observed in Forc016 strains that lost this chromosome. We conclude that also a non-wilt-inducing Fo pathogen relies on effector proteins for successful infection and that the Forc pathogenicity chromosome contains all the information necessary for causing root rot of cucurbits. Three out of nine HCT strains investigated have undergone large-scale chromosome alterations, reflecting the remarkable plasticity of Fo genomes.


July 7, 2019  |  

Inconsistency of phenotypic and genomic characteristics of Campylobacter fetus subspecies requires reevaluation of current diagnostics.

Classifications of the Campylobacter fetus subspecies fetus and venerealis were first described in 1959 and were based on the source of isolation (intestinal versus genital) and the ability of the strains to proliferate in the genital tract of cows. Two phenotypic assays (1% glycine tolerance and H2S production) were described to differentiate the subspecies. Multiple molecular assays have been applied to differentiate the C. fetus subspecies, but none of these tests is consistent with the phenotypic identification methods. In this study, we defined the core genome and accessory genes of C. fetus, which are based on the closed genomes of five C. fetus strains. Phylogenetic analysis of the core genomes of 23 C. fetus strains of the two subspecies showed a division into two clusters. The phylogenetic core genome clusters were not consistent with the phenotypic classifications of the C. fetus subspecies. However, they were consistent with the molecular characteristics of the strains, which were determined by multilocus sequence typing, sap typing, and the presence/absence of insertion sequences and a type I restriction modification system. The similarity of the genome characteristics of three of the phenotypically defined C. fetus subsp. fetus strains to C. fetus subsp. venerealis strains, when considering the core genome and accessory genes, requires a critical evaluation of the clinical relevance of C. fetus subspecies identification by phenotypic assays. Copyright © 2014, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

A gapless genome sequence of the fungus Botrytis cinerea.

Following earlier incomplete and fragmented versions of a genome sequence for the grey mould Botrytis cinerea, we here report a gapless, near-finished genome sequence for B. cinerea strain B05.10. The assembly comprises 18 chromosomes and was confirmed by an optical map and a genetic map based on ~75 000 SNP markers. All chromosomes contain fully assembled centromeric regions, and 10 chromosomes have telomeres on both ends. The genetic map consisted of 4153 cM and comparison of genetic distances with the physical distances identified 40 recombination hotspots. The linkage map also identified two mutations, located in the previously described genes Bos1 and BcsdhB, that confer resistance to the fungicides boscalid and iprodione. The genome was predicted to encode 11 701 proteins. RNAseq data from >20 different samples were used to validate and improve gene models. Manual curation of chromosome 1 revealed interesting features, such as the occurrence of a dicistronic transcript and fully overlapping genes in opposite orientations, as well as many spliced antisense transcripts. Manual curation also revealed that UTRs of genes can be complex and long, with many UTRs exceeding lengths of 1 kb and possessing multiple introns. Community annotation is in progress. This article is protected by copyright. All rights reserved. © 2016 BSPP AND JOHN WILEY & SONS LTD.


July 7, 2019  |  

Comparative genomics of Beauveria bassiana: uncovering signatures of virulence against mosquitoes.

Entomopathogenic fungi such as Beauveria bassiana are promising biological agents for control of malaria mosquitoes. Indeed, infection with B. bassiana reduces the lifespan of mosquitoes in the laboratory and in the field. Natural isolates of B. bassiana show up to 10-fold differences in virulence between the most and the least virulent isolate. In this study, we sequenced the genomes of five isolates representing the extremes of low/high virulence and three RNA libraries, and applied a genome comparison approach to uncover genetic mechanisms underpinning virulence.A high-quality, near-complete genome assembly was achieved for the highly virulent isolate Bb8028, which was compared to the assemblies of the four other isolates. Whole genome analysis showed a high level of genetic diversity between the five isolates (2.85-16.8 SNPs/kb), which grouped into two distinct phylogenetic clusters. Mating type gene analysis revealed the presence of either the MAT1-1-1 or the MAT1-2-1 gene. Moreover, a putative new MAT gene (MAT1-2-8) was detected in the MAT1-2 locus. Comparative genome analysis revealed that Bb8028 contains 163 genes exclusive for this isolate. These unique genes have a tendency to cluster in the genome and to be often located near the telomeres. Among the genes unique to Bb8028 are a Non-Ribosomal Peptide Synthetase (NRPS) secondary metabolite gene cluster, a polyketide synthase (PKS) gene, and five genes with homology to bacterial toxins. A survey of candidate virulence genes for B. bassiana is presented.Our results indicate several genes and molecular processes that may underpin virulence towards mosquitoes. Thus, the genome sequences of five isolates of B. bassiana provide a better understanding of the natural variation in virulence and will offer a major resource for future research on this important biological control agent.


July 7, 2019  |  

Gapless genome assembly of the potato and tomato early blight pathogen Alternaria solani.

The Alternaria genus consists of saprophytic fungi as well as plant-pathogenic species that have significant economic impact. To date, the genomes of multiple Alternaria species have been sequenced. These studies have yielded valuable data for molecular studies on Alternaria fungi. However, most of the current Alternaria genome assemblies are highly fragmented, thereby hampering the identification of genes that are involved in causing disease. Here, we report a gapless genome assembly of A. solani, the causal agent of early blight in tomato and potato. The genome assembly is a significant step toward a better understanding of pathogenicity of A. solani.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.