Menu
July 7, 2019  |  

Comparative genomic analysis of Klebsiella pneumoniae subsp. pneumoniae KP617 and PittNDM01, NUHL24835, and ATCC BAA-2146 reveals unique evolutionary history of this strain.

Klebsiella pneumoniae subsp. pneumoniae KP617 is a pathogenic strain that coproduces OXA-232 and NDM-1 carbapenemases. We sequenced the genome of KP617, which was isolated from the wound of a Korean burn patient, and performed a comparative genomic analysis with three additional strains: PittNDM01, NUHL24835 and ATCC BAA-2146.The complete genome of KP617 was obtained via multi-platform whole-genome sequencing. Phylogenetic analysis along with whole genome and multi-locus sequence typing of genes of the Klebsiella pneumoniae species showed that KP617 belongs to the WGLW2 group, which includes PittNDM01 and NUHL24835. Comparison of annotated genes showed that KP617 shares 98.3 % of its genes with PittNDM01. Nineteen antibiotic resistance genes were identified in the KP617 genome: bla OXA-1 and bla SHV-28 in the chromosome, bla NDM-1 in plasmid 1, and bla OXA-232 in plasmid 2 conferred resistance to beta-lactams; however, colistin- and tetracycline-resistance genes were not found. We identified 117 virulence factors in the KP617 genome, and discovered that the genes encoding these factors were also harbored by the reference strains; eight genes were lipopolysaccharide-related and four were capsular polysaccharide-related. A comparative analysis of phage-associated regions indicated that two phage regions are specific to the KP617 genome and that prophages did not act as a vehicle for transfer of antimicrobial resistance genes in this strain.Whole-genome sequencing and bioinformatics analysis revealed similarity in the genome sequences and content, and differences in phage-related genes, plasmids and antimicrobial resistance genes between KP617 and the references. In order to elucidate the precise role of these factors in the pathogenicity of KP617, further studies are required.


July 7, 2019  |  

New Delhi metallo-ß-lactamase-1-producing Klebsiella pneumoniae, Florida, USA(1).

New Delhi metallo-ß-lactamase (NDM)–producing Enterobacteriaceae have swiftly spread worldwide since an initial report in 2008 from a patient who had been transferred from India back home to Sweden (1). Epidemiologically, the global diffusion of NDM-1 producers has been associated with the Indian subcontinent and the Balkan region, which are considered the primary and secondary reservoirs of these pathogens, respectively (1). However, recent reports suggest that countries in the Middle East may constitute another potential reservoir for NDM-1 producers (1). More than 100 NDM-producing isolates have been reported in the United States, most of which were associated with recent travel from the Indian subcontinent (2,3). We report an NDM-1–producing Klebsiella pneumoniae strain that was recovered from a patient who had been transferred from Iran to a hospital in Florida, United States.


July 7, 2019  |  

Molecular evolution of a Klebsiella pneumoniae ST278 isolate harboring blaNDM-7 and involved in nosocomial transmission.

During 2013, ST278 Klebsiella pneumoniae with blaNDM-7 was isolated from the urine (KpN01) and rectum (KpN02) of a patient in Calgary, Canada. The same strain (KpN04) was subsequently isolated from another patient in the same unit. Interestingly, a carbapenem-susceptible K. pneumoniae ST278 (KpN06) was obtained 1 month later from the blood of the second patient. Next-generation sequencing (NGS) revealed that the loss of carbapenem-resistance in KpN06 was due to a 5-kb deletion on the blaNDM-7-harboring IncX3 plasmid. In addition, an IncFIB plasmid in KpN06 had a 27-kb deletion that removed genes encoding for heavy metal resistance. Phylogenetic analysis showed that the K. pneumoniae ST278 from patient 2 was likely a descendant of KpN02 and that KpN06 was a close progenitor of an environmental ST278. It is unclear whether KpN06 lost the blaNDM-7 gene in vivo. This study detailed the remarkable plasticity and speed of evolutionary changes in multidrug-resistant K. pneumoniae, demonstrating the highly recombinant nature of this species. It also highlights the ability of NGS to clarify molecular microevolutionary events within antibiotic-resistant organisms.© The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.


July 7, 2019  |  

Plasmid-mediated colistin resistance in a patient infected with Klebsiella pneumoniae.

It is alarming that the plasmid-mediated mcr-1-encoded colistin resistance discovered by Yi-Yun Liu and colleagues,1 probably selected in cows and pigs as discussed by Marisa Haenni and colleagues2 and Surbhi Malhorta-Kumar and colleagues,3 is now spreading globally in Gram-negative pathogens.4 Moreover, colistin-resistant Escherichia coli without the canonical mcr-1 gene suggest that other (transferable) colistin-resistant mechanisms exist.3


July 7, 2019  |  

Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts.

Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73?kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25?kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid-host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts.© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Use of WGS data for investigation of a long-term NDM-1-producing Citrobacter freundii outbreak and secondary in vivo spread of blaNDM-1 to Escherichia coli, Klebsiella pneumoniae and Klebsiella oxytoca.

An outbreak of NDM-1-producing Citrobacter freundii and possible secondary in vivo spread of blaNDM-1 to other Enterobacteriaceae were investigated.From October 2012 to March 2015, meropenem-resistant Enterobacteriaceae were detected in 45 samples from seven patients at Aalborg University Hospital, Aalborg, Denmark. In silico resistance genes, Inc plasmid types and STs (MLST) were obtained from WGS data from 24 meropenem-resistant isolates (13 C. freundii, 6 Klebsiella pneumoniae, 4 Escherichia coli and 1 Klebsiella oxytoca) and 1 meropenem-susceptible K. oxytoca. The sequences of the meropenem-resistant C. freundii isolates were compared by phylogenetic analyses. In vitro susceptibility to 21 antimicrobial agents was tested. Furthermore, in vitro conjugation and plasmid characterization was performed.From the seven patients, 13 highly clonal ST18 NDM-1-producing C. freundii were isolated. The ST18 NDM-1-producing C. freundii isolates were only susceptible to tetracycline, tigecycline, colistin and fosfomycin (except for the C. freundii isolates from Patient 2 and Patient 7, which were additionally resistant to tetracycline). The E. coli and K. pneumoniae from different patients belonged to different STs, indicating in vivo transfer of blaNDM-1 in the individual patients. This was further supported by in vitro conjugation and detection of a 154 kb IncA/C2 plasmid with blaNDM-1. Patient screenings failed to reveal any additional cases. None of the patients had a history of recent travel abroad and the source of the blaNDM-1 plasmid was unknown.To our knowledge, this is the first report of an NDM-1-producing C. freundii outbreak and secondary in vivo spread of an IncA/C2 plasmid with blaNDM-1 to other Enterobacteriaceae.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Tracking inter-institutional spread of NDM and identification of a novel NDM-positive plasmid, pSg1-NDM, using next-generation sequencing approaches.

Owing to gene transposition and plasmid conjugation, New Delhi metallo-ß-lactamase (NDM) is typically identified among varied Enterobacteriaceae species and STs. We used WGS to characterize the chromosomal and plasmid molecular epidemiology of NDM transmission involving four institutions in Singapore.Thirty-three Enterobacteriaceae isolates (collection years 2010-14) were sequenced using short-read sequencing-by-synthesis and analysed. Long-read single molecule, real-time sequencing (SMRTS) was used to characterize genetically a novel plasmid pSg1-NDM carried on Klebsiella pneumoniae ST147.In 20 (61%) isolates, blaNDM was located on the pNDM-ECS01 plasmid in the background of multiple bacterial STs, including eight K. pneumoniae STs and five Escherichia coli STs. In six (18%) isolates, a novel blaNDM-positive plasmid, pSg1-NDM, was found only in K. pneumoniae ST147. The pSg1-NDM-K. pneumoniae ST147 clone (Sg1-NDM) was fully sequenced using SMRTS. pSg1-NDM, a 90?103 bp IncR plasmid, carried genes responsible for resistance to six classes of antimicrobials. A large portion of pSg1-NDM had no significant homology to any known plasmids in GenBank. pSg1-NDM had no conjugative transfer region. Combined chromosomal-plasmid phylogenetic analysis revealed five clusters of clonal bacterial NDM-positive plasmid transmission, of which two were inter-institution clusters. The largest inter-institution cluster involved six K. pneumoniae ST147-pSg1-NDM isolates. Fifteen patients were involved in transmission clusters, of which four had ward contact, six had hospital contact and five had an unknown transmission link.A combined sequencing-by-synthesis and SMRTS approach can determine effectively the transmission clusters of blaNDM and genetically characterize novel plasmids. Plasmid molecular epidemiology is important to understanding NDM spread as blaNDM-positive plasmids can conjugate extensively across species and STs.© The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.


July 7, 2019  |  

Complete genome sequence of community-acquired Klebsiella pneumoniae KP36, a strain isolated from a patient with an upper urinary tract infection.

Here, we announce the complete genome sequence of Klebsiella pneumoniae KP36, a strain isolated from a patient with a severe community-acquired urinary tract infection. This genome provides insights into the pathogenesis of a pandemic K. pneumoniae strain from a community-acquired urinary tract infection. Copyright © 2016 Lin et al.


July 7, 2019  |  

Complete and assembled genome sequence of an NDM-9- and CTX-M-15-producing Klebsiella pneumoniae ST147 wastewater isolate from Switzerland.

Carbapenem-resistant Klebsiella pneumoniae have emerged worldwide and represent a major threat to human health. Here we report the genome sequence of K. pneumoniae 002SK2, an NDM-9- and CTX-M-15-producing strain isolated from wastewater in Switzerland and belonging to the international high-risk clone sequence type 147 (ST147).Whole-genome sequencing of K. pneumoniae 002SK2 was performed using Pacific Biosciences (PacBio) single-molecule, real-time (SMRT) technology RS2 reads (C4/P6 chemistry). De novo assembly was performed using Canu assembler, and sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).The genome of K. pneumoniae 002SK2 consists of a 5.4-Mbp chromosome containing blaSHV-11 and fosA6, a 159-kb IncFIB(K) plasmid carrying the heavy metal resistance genes ars and sil, and a 77-kb IncR plasmid containing blaCTX-M-15, blaNDM-9, blaOXA-9 and blaTEM-1.Multidrug-resistant K. pneumoniae harbouring blaNDM-9 and blaCTX-M-15 are spreading into the environment, most probably via wastewater from clinical settings. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Evolution and comparative genomics of F33:A-:B- plasmids carrying blaCTX-M-55 or blaCTX-M-65 in Escherichia coli and Klebsiella pneumoniae isolated from animals.

To understand the underlying evolution process of F33:A-:B- plasmids among Enterobacteriaceae isolates of various origins in China, the complete sequences of 17 blaCTX-M-harboring F33:A-:B- plasmids obtained from Escherichia coli and Klebsiella pneumoniae isolates from different sources (animals, animal-derived food, and human clinics) in China were determined. F33:A-:B- plasmids shared similar plasmid backbones comprising replication, leading, and conjugative transfer regions and differed by the numbers of repeats in yddA and traD and by the presence of group II intron, except that pHNAH9 lacked a large segment of the leading and transfer regions. The variable regions of F33:A-B- plasmids were distinct and were inserted downstream of the addiction system pemI/pemK, identified as the integration hot spot among F33:A-B- plasmids. The variable region contained resistance genes and mobile elements or contained segments from other types of plasmids, such as IncI1, IncN1, and IncX1. Three plasmids encoding CTX-M-65 were very similar to our previously described pHN7A8 plasmid. Four CTX-M-55-producing plasmids contained multidrug resistance regions related to that of F2:A-B- plasmid pHK23a from Hong Kong. Five plasmids with IncN and/or IncX replication regions and IncI1-backbone fragments had variable regions related to those of pE80 and p42-2. The remaining five plasmids with IncN replicons and an IncI1 segment also possessed closely related variable regions. The diversity in variable regions was presumably associated with rearrangements, insertions, and/or deletions mediated by mobile elements, such as IS26 and IS1294 IMPORTANCE Worldwide spread of antibiotic resistance genes among Enterobacteriaceae isolates is of great concern. F33:A-:B- plasmids are important vectors of resistance genes, such as blaCTX-M-55/-65, blaNDM-1, fosA3, and rmtB, among E. coli isolates from various sources in China. We determined and compared the complete sequences of 17 F33:A-:B- plasmids from various sources. These plasmids appear to have evolved from the same ancestor by mobile element-mediated rearrangement, acquisition, and/or loss of resistance modules and similar IncN1, IncI1, and/or IncX1 plasmid backbone segments. Our findings highlight the evolutionary potential of F33:A-:B- plasmids as efficient vectors to capture and diffuse clinically relevant resistance genes. Copyright © 2018 Wang et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.