Long read mRNA sequencing methods such as PacBio’s Iso-Seq method offers high-throughput transcriptome profiling in prokaryotic and eukaryotic cells. By avoiding the transcript assembly problem and instead sequencing full-length cDNA, Iso-Seq has emerged as the most reliable technology for annotating isoforms and, in turn, improving proteome predictions in a wide variety of organisms. Improvements in library preparation, sequencing throughput, and bioinformatics has enabled the Iso-Seq method to be complete solution for transcript characterization. The Iso-Seq Express kit is a one-day library prep requiring 60-300 ng of total RNA. The PacBio Sequel II system produces 4-5 million full-length reads, sufficient to…
With PacBio single-cell RNA sequencing using the Iso-Seq method, you can now distinguish between alternative transcript isoforms at the single-cell level. The highly accurate long reads (HiFi reads) can span the entire 5′ to 3′ end of a transcript, allowing a high-resolution view of isoform diversity and revealing cell-to-cell heterogeneity without the need for assembly.
The Earlham Institute was one of the first labs to adopt the PacBio Sequel II System. Karim Gharbi, Head of Genomics Pipelines, discusses how SMRT Sequencing and HiFi reads have increased throughput and reduced costs for genome, transcriptome, and metagenomics projects.
Highly accurate long reads, known as HiFi reads, are a new tool in scientists’ sequencing toolbox. Hear PacBio users share how they are using HiFi reads to explore the genomes, transcriptomes, metagenomes and the benefits HiFi reads provide for their addressing critical life science questions.
Accurate sequencing data is key for University of Florida scientist Ana Conesa. She is using PacBio HiFi reads from the Sequel II System to identity alternative isoforms and determine the functional impact of different isoform expression in her transcriptome research.
In this SMRT Leiden 2020 Online Virtual Event presentation, Richard Kuo of The Roslin Institute shares his work on using Iso-Seq data to gain a better understanding of the biology of a species. Kuo demonstrates how these analyses can change the way we look at genome assemblies, differential gene expression, and functional annotation.
In this PacBio Virtual Global Summit 2020 presentation, Tang Chong of BGI shares work on how single-cell isoform sequencing can reveal transcriptomic dynamics in individual cells invisible to bulk- and single-cell RNA analysis based on short-read sequencing. However, current long-read single-cell sequencing technologies have been limited by low throughput and high error rate. Chong introduces HIT-scISOseq for high-throughput single-cell isoform sequencing. This method was made possible by full-length cDNA capture using biotinylated PCR primers, and by a novel library preparation procedure that combines head-to-tail concatemeric full-length cDNAs into a long SMRTbell insert for high-accuracy PacBio Sequencing. HIT-scISOseq represents a high-throughput,…
In this ASHG 2020 PacBio Workshop Jonas Korlach, CSO, shares how the new PacBio Sequel IIe System makes highly accurate long-read sequencing easy and affordable so?all scientists can gain comprehensive views of human genomes and transcriptomes. He goes on to provide updates on the applications including human WGS for variant detection, de novo genome assembly, single-cell full-length RNA sequencing, and targeted sequencing using PCR and No-Amp methods.
Most genes in eukaryotic organisms produce alternative isoforms, broadening the diversity of proteins and non-coding RNAs encoded by the genome. In contrast to other RNA sequencing platforms that rely on short-read sequencing, long accurate reads from PacBio Single Molecule, Real-Time (SMRT) Sequencing can characterize full-length transcripts without the need for assembly and inference. The PacBio isoform sequencing (Iso-Seq) method generates full-length sequences for transcripts up to 10 kb in length, with scalable throughput using barcoding approaches. The Iso-Seq application can be employed for a wide variety of studies, including improvement of gene annotation, identification of novel isoforms and fusion transcripts,…