July 19, 2019  |  

Comparative analyses of low, medium and high-resolution HLA typing technologies for human populations

Human Leukocyte Antigen (HLA) encoding genes are part of the major histocompatibility complex (MHC) on human chromosome 6. This region is one of the most polymorphic regions in the human genome. Prior knowledge of HLA allelic polymorphisms is clinically important for matching donor and recipient during organ/tissue transplantation. HLA allelic information is also useful in predicting immune responses to various infectious diseases, genetic disorders and autoimmune conditions. India harbors over a billion people and its population is untapped for HLA allelic diversity. In this study, we explored and compared three HLA typing methods for South Indian population, using Sequence-Specific Primers (SSP), NGS (Roche/454) and single- molecule sequencing (PacBio RS II) platforms. Over 1020 DNA samples were typed at low resolution using SSP method to determine the major HLA alleles within the South Indian population. These studies were followed up with medium resolution HLA typing of 80 samples based on exonic sequences on the Roche/454 sequencing system and high-resolution (6-8 digit) typing of 8 samples for HLA alleles of class I genes (HLA-A, B and C) and class II genes (HLA-DRB1 and DQB1) using PacBio RS II platform. The long reads delivered by SMRT technology, covered the full-length class I and class II genes/alleles in contiguous reads including untranslated regions, exons and introns, which provided phased SNP information. We have identified three novel alleles from PacBio data that were verified by Roche 454 sequencing. This is the first case study of HLA typing using second and third generation NGS technologies for an Indian population. The PacBio platform is a promising platform for large-scale HLA typing for establishing an HLA database for the untapped ethnic populations of India.


July 7, 2019  |  

Complete genome sequencing of protease-producing novel Arthrobacter sp. strain IHBB 11108 using PacBio Single-Molecule Real-Time Sequencing technology.

A previously uncharacterized species of the genus Arthrobacter, strain IHBB 11108 (MCC 2780), is a Gram-positive, strictly aerobic, nonmotile, cold-adapted, and protease-producing alkaliphilic actinobacterium, isolated from shallow undersurface water from Chandra Tal Lake, Lahaul-Spiti, India. The complete genome of the strain is 3.6 Mb in size with an average 58.97% G+C content.


July 7, 2019  |  

Complete genome sequence of the rhizobacterium Pseudomonas trivialis strain IHBB745 with multiple plant growth-promoting activities and tolerance to desiccation and alkalinity

The complete genome sequence of 6.45 Mb is reported here for Pseudomonas trivialis strain IHBB745 (MTCC 5336), which is an efficient, stress-tolerant, and broad-spectrum plant growth-promoting rhizobacterium. The gene-coding clusters predicted the genes for phosphate solubilization, siderophore production, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole-3-acetic acid (IAA) production, and stress response. Copyright © 2015 Gulati et al.


July 7, 2019  |  

Complete genome sequence of Arthrobacter sp. ERGS1:01, a putative novel bacterium with prospective cold active industrial enzymes, isolated from East Rathong glacier in India.

We report the complete genome sequence of Arthrobacter sp. ERGS1:01, a novel bacterium which produces industrial enzymes at low temperature. East Rathong glacier in Sikkim Himalayas is untouched and unexplored for microbial diversity though it has a rich source of glaciers, alpine and meadows. Genome sequence has provided the basis for understanding its adaptation under harsh condition of Himalayan glacier, its ability to produce cold active industrial enzymes and has unlocked opportunities for microbial bioprospection from East Rathong glacier. Copyright © 2015. Published by Elsevier B.V.


July 7, 2019  |  

Genome assembly of Chryseobacterium polytrichastri ERMR1:04, a psychrotolerant bacterium with cold active proteases, isolated from East Rathong Glacier in India.

We report here the genome assembly of a psychrotolerant bacterium, Chryseobacterium polytrichastri ERMR1:04, which secretes cold-active proteases. The bacterium was isolated from a pristine location, the East Rathong Glacier in the Sikkim Himalaya. The 5.53-Mb genome provides insight into the cold-active industrial enzyme and adaptation in the cold environment. Copyright © 2015 Kumar et al.


July 7, 2019  |  

Complete genome sequence of Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium tolerant to cold and radiations isolated from Sikkim Himalaya.

Arthrobacter alpinus ERGS4:06, a yellow pigmented bacterium which exhibited tolerance to cold and UV radiations was isolated from the glacial stream of East Rathong glacier in Sikkim Himalaya. Here we report the 4.3 Mb complete genome assembly that has provided the basis for potential role of pigments as a survival strategy to combat stressed environment of cold and high UV-radiation and additionally the ability to produce cold active industrial enzymes. Copyright © 2016. Published by Elsevier B.V.


July 7, 2019  |  

First complete genome sequence of a species in the genus Microterricola, an extremophilic cold active enzyme producing bacterial strain ERGS5:02 isolated from Sikkim Himalaya.

Here, we report the first ever complete genome sequence of any species in the genus Microterricola. The bacterium Microterricola viridarii ERGS5:02 isolated from the glacial stream of Sikkim Himalaya survived at low temperature and exhibited enhanced growth upon UV treatment, in addition, it also produced cold active enzymes. The complete genome assembly of 3.7 Mb suggested for the presence of genetic elements favoring the survival of bacterium under extreme conditions of UV and low temperature besides producing amylase, lipase and protease of industrial relevance. Copyright © 2016 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Strategies for high-altitude adaptation revealed from high-quality draft genome of non-violacein producing Janthinobacterium lividum ERGS5:01.

A light pink coloured bacterial strain ERGS5:01 isolated from glacial stream water of Sikkim Himalaya was affiliated to Janthinobacterium lividum based on 16S rRNA gene sequence identity and phylogenetic clustering. Whole genome sequencing was performed for the strain to confirm its taxonomy as it lacked the typical violet pigmentation of the genus and also to decipher its survival strategy at the aquatic ecosystem of high elevation. The PacBio RSII sequencing generated genome of 5,168,928 bp with 4575 protein-coding genes and 118 RNA genes. Whole genome-based multilocus sequence analysis clustering, in silico DDH similarity value of 95.1% and, the ANI value of 99.25% established the identity of the strain ERGS5:01 (MCC 2953) as a non-violacein producing J. lividum. The genome comparisons across genus Janthinobacterium revealed an open pan-genome with the scope of the addition of new orthologous cluster to complete the genomic inventory. The genomic insight provided the genetic basis of freezing and frequent freeze-thaw cycle tolerance and, for industrially important enzymes. Extended insight into the genome provided clues of crucial genes associated with adaptation in the harsh aquatic ecosystem of high altitude.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.