Menu
July 19, 2019  |  

Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome through long-read (>11?kb), single molecule, real-time sequencing.

The application of next-generation sequencing to estimate genetic diversity of Plasmodium falciparum, the most lethal malaria parasite, has proved challenging due to the skewed AT-richness [~80.6% (A?+?T)] of its genome and the lack of technology to assemble highly polymorphic subtelomeric regions that contain clonally variant, multigene virulence families (Ex: var and rifin). To address this, we performed amplification-free, single molecule, real-time sequencing of P. falciparum genomic DNA and generated reads of average length 12?kb, with 50% of the reads between 15.5 and 50?kb in length. Next, using the Hierarchical Genome Assembly Process, we assembled the P. falciparum genome de novo and successfully compiled all 14 nuclear chromosomes telomere-to-telomere. We also accurately resolved centromeres [~90-99% (A?+?T)] and subtelomeric regions and identified large insertions and duplications that add extra var and rifin genes to the genome, along with smaller structural variants such as homopolymer tract expansions. Overall, we show that amplification-free, long-read sequencing combined with de novo assembly overcomes major challenges inherent to studying the P. falciparum genome. Indeed, this technology may not only identify the polymorphic and repetitive subtelomeric sequences of parasite populations from endemic areas but may also evaluate structural variation linked to virulence, drug resistance and disease transmission. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


July 19, 2019  |  

Ribbon: Visualizing complex genome alignments and structural variation

Visualization has played an extremely important role in the current genomic revolution to inspect and understand variants, expression patterns, evolutionary changes, and a number of other relationships. However, most of the information in read-to-reference or genome-genome alignments is lost for structural variations in the one-dimensional views of most genome browsers showing only reference coordinates. Instead, structural variations captured by long reads or assembled contigs often need more context to understand, including alignments and other genomic information from multiple chromosomes. We have addressed this problem by creating Ribbon (genomeribbon.com) an interactive online visualization tool that displays alignments along both reference and query sequences, along with any associated variant calls in the sample. This way Ribbon shows patterns in alignments of many reads across multiple chromosomes, while allowing detailed inspection of individual reads (Supplementary Note 1). For example, here we show a gene fusion in the SK-BR-3 breast cancer cell line linking the genes CYTH1 and EIF3H. While it has been found in the transcriptome previously, genome sequencing did not identify a direct chromosomal fusion between these two genes. After SMRT sequencing, Ribbon shows that there are indeed long reads that span from one gene to the other, going through not one but two variants, for the first time showing the genomic link between these two genes (Figure 1a). More gene fusions of this cancer cell line are investigated in Supplementary Note 2. Figure 1b shows another complex event in this sample made simple in Ribbon: the translocation of a 4.4 kb sequence deleted from chr19 and inserted into chr16 (Figure 1b). Thus, Ribbon enables understanding of complex variants, and it may also help in the detection of sequencing and sample preparation issues, testing of aligners and variant-callers, and rapid curation of structural variant candidates (Supplementary Note 3). In addition to SAM and BAM files with long, short, or paired-end reads, Ribbon can also load coordinate files from whole genome aligners such as MUMmer. Therefore, Ribbon can be used to test assembly algorithms or inspect the similarity between species. Supplementary Note 4 shows a comparison of gorilla and human genomes using Ribbon, highlighting major structural differences. In conclusion, Ribbon is a powerful interactive web tool for viewing complex genomic alignments.


July 19, 2019  |  

SMRT genome assembly corrects reference errors, resolving the genetic basis of virulence in Mycobacterium tuberculosis.

The genetic basis of virulence in Mycobacterium tuberculosis has been investigated through genome comparisons of virulent (H37Rv) and attenuated (H37Ra) sister strains. Such analysis, however, relies heavily on the accuracy of the sequences. While the H37Rv reference genome has had several corrections to date, that of H37Ra is unmodified since its original publication.Here, we report the assembly and finishing of the H37Ra genome from single-molecule, real-time (SMRT) sequencing. Our assembly reveals that the number of H37Ra-specific variants is less than half of what the Sanger-based H37Ra reference sequence indicates, undermining and, in some cases, invalidating the conclusions of several studies. PE_PPE family genes, which are intractable to commonly-used sequencing platforms because of their repetitive and GC-rich nature, are overrepresented in the set of genes in which all reported H37Ra-specific variants are contradicted. Further, one of the sequencing errors in H37Ra masks a true variant in common with the clinical strain CDC1551 which, when considered in the context of previous work, corresponds to a sequencing error in the H37Rv reference genome.Our results constrain the set of genomic differences possibly affecting virulence by more than half, which focuses laboratory investigation on pertinent targets and demonstrates the power of SMRT sequencing for producing high-quality reference genomes.


July 7, 2019  |  

The challenges and importance of structural variation detection in livestock.

Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries. Regardless of the challenges, SV detection is just as important for livestock researchers as it is for human researchers, given that several productive traits and diseases have been linked to copy number variations (CNVs) in cattle, sheep, and pig. Already, there is evidence that many beneficial SVs have been artificially selected in livestock such as a duplication of the agouti signaling protein gene that causes white coat color in sheep. In this review, we will list current SV and CNV discoveries in livestock and discuss the problems that hinder routine discovery and tracking of these polymorphisms. We will also discuss the impacts of selective breeding on CNV and SV frequencies and mention how SV genotyping could be used in the future to improve genetic selection.


July 7, 2019  |  

Complete genome sequence of Spiroplasma citri strain R8-A2T, causal agent of stubborn disease in Citrus species.

Spiroplasma citri causes stubborn disease in Citrus spp. and diseases in other plants. Here, we report the nucleotide sequence of the 1,599,709-bp circular chromosome and two plasmids of S. citri strain R8-A2(T) This information will facilitate analyses to understand spiroplasmal pathogenicity and evolutionary adaptations to lifestyles in plants and arthropod hosts. Copyright © 2017 Davis et al.


July 7, 2019  |  

Discovery and genotyping of novel sequence insertions in many sequenced individuals

Motivation: Despite recent advances in algorithms design to characterize structural variation using high-throughput short read sequencing (HTS) data, characterization of novel sequence insertions longer than the average read length remains a challenging task. This is mainly due to both computational difficulties and the complexities imposed by genomic repeats in generating reliable assemblies to accurately detect both the sequence content and the exact location of such insertions. Additionally, de novo genome assembly algorithms typically require a very high depth of coverage, which may be a limiting factor for most genome studies. Therefore, characterization of novel sequence insertions is not a routine part of most sequencing projects. There are only a handful of algorithms that are specifically developed for novel sequence insertion discovery that can bypass the need for the whole genome de novo assembly. Still, most such algorithms rely on high depth of coverage, and to our knowledge there is only one method (PopIns) that can use multi-sample data to “collectively” obtain a very high coverage dataset to accurately find insertions common in a given population. Result: Here, we present Pamir, a new algorithm to efficiently and accurately discover and genotype novel sequence insertions using either single or multiple genome sequencing datasets. Pamir is able to detect breakpoint locations of the insertions and calculate their zygosity (i.e. heterozygous versus homozygous) by analyzing multiple sequence signatures, matching one-end-anchored sequences to small-scale de novo assemblies of unmapped reads, and conducting strand-aware local assembly. We test the efficacy of Pamir on both simulated and real data, and demonstrate its potential use in accurate and routine identification of novel sequence insertions in genome projects. Availability and implementation: Pamir is available at https://github.com/vpc-ccg/pamir. Contact:fhach@sfu.ca, prostatecentre.com or calkan@cs.bilkent.edu.tr Supplementary information:Supplementary data are available at Bioinformatics online.


July 7, 2019  |  

Structural variation offers new home for disease associations and gene discovery

Following completion of the Human Genome Project, most studies of human genetic variation have centered on single nucleotide polymorphisms (SNPs). SNPs are numerous in individual genomes and serve as useful genetic markers in association studies across a population. These markers have been leveraged to identify genetic loci for disease risk and draw associations with numerous traits of interest. Despite their usefulness, SNPs do not tell the whole story. For example, most SNPs are associated with only a small increased risk of disease, and they usually cannot identify on their own which genes are causal. This has resulted in what many researchers have referred to as missing or hidden heritability.


July 7, 2019  |  

Hunting structural variants: Population by population

Until recently, most population-scale genome sequencing studies have focused on identifying single nucleotide variants (SNVs) to explore genetic differences between individuals. Like so many SNV-based genome-wide association studies, however, these efforts have had difficulty identifying causative genetic mechanisms underlying most complex functions. More and more, the genomics community has realised that structural variation is likely responsible for many of the traits and phenotypes that scientists have not been able to attribute to SNVs. This class of variants, defined as genetic differences of 50 bp or larger, accounts for most of the DNA sequence differences between any two people. Structural variants (SVs) are also already known to cause many common and rare diseases including ALS, schizophrenia, leukemia, Carney complex, and Huntington’s disease. Despite the importance of SVs, these larger variants have been understudied and underreported compared to their single-nucleotide counterparts. One reason is that they remain difficult to detect. Their length often means they cannot be fully spanned using short sequencing reads. They also often occur in highly repetitive or GC-rich regions of the genome, making them challenging targets. As such, this class of human genetic variation has remained vastly under-explored in global populations and is now ripe for discovery.


July 7, 2019  |  

Coevolution between Nuclear-encoded DNA replication, recombination, and repair genes and plastid genome complexity.

Disruption of DNA replication, recombination, and repair (DNA-RRR) systems has been hypothesized to cause highly elevated nucleotide substitution rates and genome rearrangements in the plastids of angiosperms, but this theory remains untested. To investigate nuclear-plastid genome (plastome) coevolution in Geraniaceae, four different measures of plastome complexity (rearrangements, repeats, nucleotide insertions/deletions, and substitution rates) were evaluated along with substitution rates of 12 nuclear-encoded, plastid-targeted DNA-RRR genes from 27 Geraniales species. Significant correlations were detected for nonsynonymous (dN) but not synonymous (dS) substitution rates for three DNA-RRR genes (uvrB/C, why1, and gyrA) supporting a role for these genes in accelerated plastid genome evolution in Geraniaceae. Furthermore, correlation between dN of uvrB/C and plastome complexity suggests the presence of nucleotide excision repair system in plastids. Significant correlations were also detected between plastome complexity and 13 of the 90 nuclear-encoded organelle-targeted genes investigated. Comparisons revealed significant acceleration of dN in plastid-targeted genes of Geraniales relative to Brassicales suggesting this correlation may be an artifact of elevated rates in this gene set in Geraniaceae. Correlation between dN of plastid-targeted DNA-RRR genes and plastome complexity supports the hypothesis that the aberrant patterns in angiosperm plastome evolution could be caused by dysfunction in DNA-RRR systems.© The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Structural variation detection using next-generation sequencing data: A comparative technical review.

Structural variations (SVs) are mutations in the genome of size at least fifty nucleotides. They contribute to the phenotypic differences among healthy individuals, cause severe diseases and even cancers by breaking or linking genes. Thus, it is crucial to systematically profile SVs in the genome. In the past decade, many next-generation sequencing (NGS)-based SV detection methods have been proposed due to the significant cost reduction of NGS experiments and their ability to unbiasedly detect SVs to the base-pair resolution. These SV detection methods vary in both sensitivity and specificity, since they use different SV-property-dependent and library-property-dependent features. As a result, predictions from different SV callers are often inconsistent. Besides, the noises in the data (both platform-specific sequencing error and artificial chimeric reads) impede the specificity of SV detection. Poorly characterized regions in the human genome (e.g., repeat regions) greatly impact the reads mapping and in turn affect the SV calling accuracy. Calling of complex SVs requires specialized SV callers. Apart from accuracy, processing speed of SV caller is another factor deciding its usability. Knowing the pros and cons of different SV calling techniques and the objectives of the biological study are essential for biologists and bioinformaticians to make informed decisions. This paper describes different components in the SV calling pipeline and reviews the techniques used by existing SV callers. Through simulation study, we also demonstrate that library properties, especially insert size, greatly impact the sensitivity of different SV callers. We hope the community can benefit from this work both in designing new SV calling methods and in selecting the appropriate SV caller for specific biological studies. Copyright © 2016 Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.