Menu
July 19, 2019  |  

Comparative genome analysis of Wolbachia strain wAu

BACKGROUND:Wolbachia intracellular bacteria can manipulate the reproduction of their arthropod hosts, including inducing sterility between populations known as cytoplasmic incompatibility (CI). Certain strains have been identified that are unable to induce or rescue CI, including wAu from Drosophila. Genome sequencing and comparison with CI-inducing related strain wMel was undertaken in order to better understand the molecular basis of the phenotype.RESULTS:Although the genomes were broadly similar, several rearrangements were identified, particularly in the prophage regions. Many orthologous genes contained single nucleotide polymorphisms (SNPs) between the two strains, but a subset containing major differences that would likely cause inactivation in wAu were identified, including the absence of the wMel ortholog of a gene recently identified as a CI candidate in a proteomic study. The comparative analyses also focused on a family of transcriptional regulator genes implicated in CI in previous work, and revealed numerous differences between the strains, including those that would have major effects on predicted function.CONCLUSIONS:The study provides support for existing candidates and novel genes that may be involved in CI, and provides a basis for further functional studies to examine the molecular basis of the phenotype.


July 19, 2019  |  

Long-read single molecule sequencing to resolve tandem gene copies: The Mst77Y region on the Drosophila melanogaster Y chromosome.

The autosomal gene Mst77F of Drosophila melanogaster is essential for male fertility. In 2010, Krsticevic et al. (Genetics 184: 295-307) found 18 Y-linked copies of Mst77F (“Mst77Y”), which collectively account for 20% of the functional Mst77F-like mRNA. The Mst77Y genes were severely misassembled in the then-available genome assembly and were identified by cloning and sequencing polymerase chain reaction products. The genomic structure of the Mst77Y region and the possible existence of additional copies remained unknown. The recent publication of two long-read assemblies of D. melanogaster prompted us to reinvestigate this challenging region of the Y chromosome. We found that the Illumina Synthetic Long Reads assembly failed in the Mst77Y region, most likely because of its tandem duplication structure. The PacBio MHAP assembly of the Mst77Y region seems to be very accurate, as revealed by comparisons with the previously found Mst77Y genes, a bacterial artificial chromosome sequence, and Illumina reads of the same strain. We found that the Mst77Y region spans 96 kb and originated from a 3.4-kb transposition from chromosome 3L to the Y chromosome, followed by tandem duplications inside the Y chromosome and invasion of transposable elements, which account for 48% of its length. Twelve of the 18 Mst77Y genes found in 2010 were confirmed in the PacBio assembly, the remaining six being polymerase chain reaction-induced artifacts. There are several identical copies of some Mst77Y genes, coincidentally bringing the total copy number to 18. Besides providing a detailed picture of the Mst77Y region, our results highlight the utility of PacBio technology in assembling difficult genomic regions such as tandemly repeated genes. Copyright © 2015 Krsticevic et al.


July 19, 2019  |  

DNA methylation on N6-adenine in C. elegans.

In mammalian cells, DNA methylation on the fifth position of cytosine (5mC) plays an important role as an epigenetic mark. However, DNA methylation was considered to be absent in C. elegans because of the lack of detectable 5mC, as well as homologs of the cytosine DNA methyltransferases. Here, using multiple approaches, we demonstrate the presence of adenine N(6)-methylation (6mA) in C. elegans DNA. We further demonstrate that this modification increases trans-generationally in a paradigm of epigenetic inheritance. Importantly, we identify a DNA demethylase, NMAD-1, and a potential DNA methyltransferase, DAMT-1, which regulate 6mA levels and crosstalk between methylations of histone H3K4 and adenines and control the epigenetic inheritance of phenotypes associated with the loss of the H3K4me2 demethylase spr-5. Together, these data identify a DNA modification in C. elegans and raise the exciting possibility that 6mA may be a carrier of heritable epigenetic information in eukaryotes. Copyright © 2015 Elsevier Inc. All rights reserved.


July 19, 2019  |  

Microplitis demolitor bracovirus proviral loci and clustered replication genes exhibit distinct DNA amplification patterns during replication.

Polydnaviruses are large, double-stranded DNA viruses that are beneficial symbionts of parasitoid wasps. Polydnaviruses in the genus Bracovirus (BVs) persist in wasps as proviruses, and their genomes consist of two functional components referred to as proviral segments and nudivirus-like genes. Prior studies established that the DNA domains where proviral segments reside are amplified during replication and that segments within amplified loci are circularized before packaging into nucleocapsids. One DNA domain where nudivirus-like genes are located is also amplified but never packaged into virions. We recently sequenced the genome of the braconid Microplitis demolitor, which carries M. demolitor bracovirus (MdBV). Here, we took advantage of this resource to characterize the DNAs that are amplified during MdBV replication using a combination of Illumina and Pacific Biosciences sequencing approaches. The results showed that specific nucleotide sites identify the boundaries of amplification for proviral loci. Surprisingly, however, amplification of loci 3, 4, 6, and 8 produced head-to-tail concatemeric intermediates; loci 1, 2, and 5 produced head-to-head/tail-to-tail concatemers; and locus 7 yielded no identified concatemers. Sequence differences at amplification junctions correlated with the types of amplification intermediates the loci produced, while concatemer processing gave rise to the circularized DNAs that are packaged into nucleocapsids. The MdBV nudivirus-like gene cluster was also amplified, albeit more weakly than most proviral loci and with nondiscrete boundaries. Overall, the MdBV genome exhibited three patterns of DNA amplification during replication. Our data also suggest that PacBio sequencing could be useful in studying the replication intermediates produced by other DNA viruses. Polydnaviruses are of fundamental interest because they provide a novel example of viruses evolving into beneficial symbionts. All polydnaviruses are associated with insects called parasitoid wasps, which are of additional applied interest because many are biological control agents of pest insects. Polydnaviruses in the genus Bracovirus (BVs) evolved ~100 million years ago from an ancestor related to the baculovirus-nudivirus lineage but have also established many novelties due to their symbiotic lifestyle. These include the fact that BVs are transmitted only vertically as proviruses and produce replication-defective virions that package only a portion of the viral genome. Here, we studied Microplitis demolitor bracovirus (MdBV) and report that its genome exhibits three distinct patterns of DNA amplification during replication. We also identify several previously unknown features of BV genomes that correlate with these different amplification patterns. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


July 19, 2019  |  

Selections that isolate recombinant mitochondrial genomes in animals.

Homologous recombination is widespread and catalyzes evolution. Nonetheless, its existence in animal mitochondrial DNA is questioned. We designed selections for recombination between co-resident mitochondrial genomes in various heteroplasmic Drosophila lines. In four experimental settings, recombinant genomes became the sole or dominant genome in the progeny. Thus, selection uncovers occurrence of homologous recombination in Drosophila mtDNA and documents its functional benefit. Double-strand breaks enhanced recombination in the germ line and revealed somatic recombination. When the recombination partner was a diverged D. melanogaster genome or a genome from a different species such as D. yakuba, sequencing revealed long continuous stretches of exchange. In addition, the distribution of sequence polymorphisms in recombinants allowed us to map a selected trait to a particular region in the Drosophila mitochondrial genome. Thus, recombination can be harnessed to dissect function and evolution of mitochondrial genome.


July 19, 2019  |  

Birth of a new gene on the Y chromosome of Drosophila melanogaster.

Contrary to the pattern seen in mammalian sex chromosomes, where most Y-linked genes have X-linked homologs, the Drosophila X and Y chromosomes appear to be unrelated. Most of the Y-linked genes have autosomal paralogs, so autosome-to-Y transposition must be the main source of Drosophila Y-linked genes. Here we show how these genes were acquired. We found a previously unidentified gene (flagrante delicto Y, FDY) that originated from a recent duplication of the autosomal gene vig2 to the Y chromosome of Drosophila melanogaster. Four contiguous genes were duplicated along with vig2, but they became pseudogenes through the accumulation of deletions and transposable element insertions, whereas FDY remained functional, acquired testis-specific expression, and now accounts for ~20% of the vig2-like mRNA in testis. FDY is absent in the closest relatives of D. melanogaster, and DNA sequence divergence indicates that the duplication to the Y chromosome occurred ~2 million years ago. Thus, FDY provides a snapshot of the early stages of the establishment of a Y-linked gene and demonstrates how the Drosophila Y has been accumulating autosomal genes.


July 19, 2019  |  

Major improvements to the Heliconius melpomene genome assembly used to confirm 10 chromosome fusion events in 6 million years of butterfly evolution.

The Heliconius butterflies are a widely studied adaptive radiation of 46 species spread across Central and South America, several of which are known to hybridize in the wild. Here, we present a substantially improved assembly of the Heliconius melpomene genome, developed using novel methods that should be applicable to improving other genome assemblies produced using short read sequencing. First, we whole-genome-sequenced a pedigree to produce a linkage map incorporating 99% of the genome. Second, we incorporated haplotype scaffolds extensively to produce a more complete haploid version of the draft genome. Third, we incorporated ~20x coverage of Pacific Biosciences sequencing, and scaffolded the haploid genome using an assembly of this long-read sequence. These improvements result in a genome of 795 scaffolds, 275 Mb in length, with an N50 length of 2.1 Mb, an N50 number of 34, and with 99% of the genome placed, and 84% anchored on chromosomes. We use the new genome assembly to confirm that the Heliconius genome underwent 10 chromosome fusions since the split with its sister genus Eueides, over a period of about 6 million yr. Copyright © 2016 Davey et al.


July 19, 2019  |  

Radical remodeling of the Y chromosome in a recent radiation of malaria mosquitoes.

Y chromosomes control essential male functions in many species, including sex determination and fertility. However, because of obstacles posed by repeat-rich heterochromatin, knowledge of Y chromosome sequences is limited to a handful of model organisms, constraining our understanding of Y biology across the tree of life. Here, we leverage long single-molecule sequencing to determine the content and structure of the nonrecombining Y chromosome of the primary African malaria mosquito, Anopheles gambiae. We find that the An. gambiae Y consists almost entirely of a few massively amplified, tandemly arrayed repeats, some of which can recombine with similar repeats on the X chromosome. Sex-specific genome resequencing in a recent species radiation, the An. gambiae complex, revealed rapid sequence turnover within An. gambiae and among species. Exploiting 52 sex-specific An. gambiae RNA-Seq datasets representing all developmental stages, we identified a small repertoire of Y-linked genes that lack X gametologs and are not Y-linked in any other species except An. gambiae, with the notable exception of YG2, a candidate male-determining gene. YG2 is the only gene conserved and exclusive to the Y in all species examined, yet sequence similarity to YG2 is not detectable in the genome of a more distant mosquito relative, suggesting rapid evolution of Y chromosome genes in this highly dynamic genus of malaria vectors. The extensive characterization of the An. gambiae Y provides a long-awaited foundation for studying male mosquito biology, and will inform novel mosquito control strategies based on the manipulation of Y chromosomes.


July 19, 2019  |  

Bats may eat diurnal flies that rest on wind turbines

Bats are currently killed in large numbers at wind turbines worldwide, but the ultimate reason why this happens remains poorly understood. One hypothesis is that bats visit wind turbines to feed on insects exposed at the turbine towers. We used single molecule next generation DNA sequencing to identify stomach contents of 18 bats of four species (Pipistrellus pygmaeus, Nyctalus noctula, Eptesicus nilssonii and Vespertilio murinus) found dead under wind turbines in southern Sweden. Stomach contents were diverse but included typically diurnal flies, e.g. blow-flies (Calliphoridae), flesh-flies (Sarcophagidae) and houseflies (Muscidae) and also several flightless taxa. Such prey items were eaten by all bat species and at all wind turbine localities and it seems possible that they had been captured at or near the surface of the turbines at night. Using sticky traps, we documented an abundance of swarming (diurnal) ants (Myrmica spp.) and sometimes blow-flies and houseflies at the nacelle house. Near the base of the tower the catches were more diverse and corresponded better with the taxa found in the bat stomachs, including various diurnal flies. To evaluate if flies and other insects resting on the surface of a wind turbine are available to bats, we ensonified a house fly (Musca) on a smooth (plastic) surface with synthetic ultrasonic pulses of the frequencies used by the bat species that we had sampled. The experiment revealed potentially useful echoes, provided the attack angle was low and the frequency high (50–75 kHz). Hence resting flies and other arthropods can probably be detected by echolocating bats on the surface of a wind turbine. Our findings are consistent with published observations of the behavior of bats at wind turbines and may actually explain the function of some of these behaviors.


July 19, 2019  |  

Genomic changes following the reversal of a Y chromosome to an autosome in Drosophila pseudoobscura

Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome-Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10–15 Mya. We used single molecule real-time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y-to-dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ~78 Kb and is not repeat-dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y-to-dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y-to-dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y-to-dot translocation.


July 19, 2019  |  

Variation and evolution in the glutamine-rich repeat region of Drosophila argonaute-2.

RNA interference pathways mediate biological processes through Argonaute-family proteins, which bind small RNAs as guides to silence complementary target nucleic acids . In insects and crustaceans Argonaute-2 silences viral nucleic acids, and therefore acts as a primary effector of innate antiviral immunity. Although the function of the major Argonaute-2 domains, which are conserved across most Argonaute-family proteins, are known, many invertebrate Argonaute-2 homologs contain a glutamine-rich repeat (GRR) region of unknown function at the N-terminus . Here we combine long-read amplicon sequencing of Drosophila Genetic Reference Panel (DGRP) lines with publicly available sequence data from many insect species to show that this region evolves extremely rapidly and is hyper-variable within species. We identify distinct GRR haplotype groups in Drosophila melanogaster, and suggest that one of these haplotype groups has recently risen to high frequency in a North American population. Finally, we use published data from genome-wide association studies of viral resistance in D. melanogaster to test whether GRR haplotypes are associated with survival after virus challenge. We find a marginally significant association with survival after challenge with Drosophila C Virus in the DGRP, but we were unable to replicate this finding using lines from the Drosophila Synthetic Population Resource panel. Copyright © 2016 Palmer and Obbard.


July 19, 2019  |  

Rapid functional and sequence differentiation of a tandemly repeated species-specific multigene family in Drosophila.

Gene clusters of recently duplicated genes are hotbeds for evolutionary change. However, our understanding of how mutational mechanisms and evolutionary forces shape the structural and functional evolution of these clusters is hindered by the high sequence identity among the copies, which typically results in their inaccurate representation in genome assemblies. The presumed testis-specific, chimeric gene Sdic originated, and tandemly expanded in Drosophila melanogaster, contributing to increased male-male competition. Using various types of massively parallel sequencing data, we studied the organization, sequence evolution, and functional attributes of the different Sdic copies. By leveraging long-read sequencing data, we uncovered both copy number and order differences from the currently accepted annotation for the Sdic region. Despite evidence for pervasive gene conversion affecting the Sdic copies, we also detected signatures of two episodes of diversifying selection, which have contributed to the evolution of a variety of C-termini and miRNA binding site compositions. Expression analyses involving RNA-seq datasets from 59 different biological conditions revealed distinctive expression breadths among the copies, with three copies being transcribed in females, opening the possibility to a sexually antagonistic effect. Phenotypic assays using Sdic knock-out strains indicated that should this antagonistic effect exist, it does not compromise female fertility. Our results strongly suggest that the genome consolidation of the Sdic gene cluster is more the result of a quick exploration of different paths of molecular tinkering by different copies than a mere dosage increase, which could be a recurrent evolutionary outcome in the presence of persistent sexual selection. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


July 19, 2019  |  

Single-molecule sequencing resolves the detailed structure of complex satellite DNA loci in Drosophila melanogaster.

Highly repetitive satellite DNA (satDNA) repeats are found in most eukaryotic genomes. SatDNAs are rapidly evolving and have roles in genome stability and chromosome segregation. Their repetitive nature poses a challenge for genome assembly and makes progress on the detailed study of satDNA structure difficult. Here, we use single-molecule sequencing long reads from Pacific Biosciences (PacBio) to determine the detailed structure of all major autosomal complex satDNA loci in Drosophila melanogaster, with a particular focus on the 260-bp and Responder satellites. We determine the optimal de novo assembly methods and parameter combinations required to produce a high-quality assembly of these previously unassembled satDNA loci and validate this assembly using molecular and computational approaches. We determined that the computationally intensive PBcR-BLASR assembly pipeline yielded better assemblies than the faster and more efficient pipelines based on the MHAP hashing algorithm, and it is essential to validate assemblies of repetitive loci. The assemblies reveal that satDNA repeats are organized into large arrays interrupted by transposable elements. The repeats in the center of the array tend to be homogenized in sequence, suggesting that gene conversion and unequal crossovers lead to repeat homogenization through concerted evolution, although the degree of unequal crossing over may differ among complex satellite loci. We find evidence for higher-order structure within satDNA arrays that suggest recent structural rearrangements. These assemblies provide a platform for the evolutionary and functional genomics of satDNAs in pericentric heterochromatin. © 2017 Khost et al.; Published by Cold Spring Harbor Laboratory Press.


July 19, 2019  |  

The diversity, structure, and function of heritable adaptive immunity sequences in the Aedes aegypti genome.

The Aedes aegypti mosquito transmits arboviruses, including dengue, chikungunya, and Zika virus. Understanding the mechanisms underlying mosquito immunity could provide new tools to control arbovirus spread. Insects exploit two different RNAi pathways to combat viral and transposon infection: short interfering RNAs (siRNAs) and PIWI-interacting RNAs (piRNAs) [1, 2]. Endogenous viral elements (EVEs) are sequences from non-retroviral viruses that are inserted into the mosquito genome and can act as templates for the production of piRNAs [3, 4]. EVEs therefore represent a record of past infections and a reservoir of potential immune memory [5]. The large-scale organization of EVEs has been difficult to resolve with short-read sequencing because they tend to integrate into repetitive regions of the genome. To define the diversity, organization, and function of EVEs, we took advantage of the contiguity associated with long-read sequencing to generate a high-quality assembly of the Ae. aegypti-derived Aag2 cell line genome, an important and widely used model system. We show EVEs are acquired through recombination with specific classes of long terminal repeat (LTR) retrotransposons and organize into large loci (>50 kbp) characterized by high LTR density. These EVE-containing loci have increased density of piRNAs compared to similar regions without EVEs. Furthermore, we detected EVE-derived piRNAs consistent with a targeted processing of persistently infecting virus genomes. We propose that comparisons of EVEs across mosquito populations may explain differences in vector competence, and further study of the structure and function of these elements in the genome of mosquitoes may lead to epidemiological interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 19, 2019  |  

The evolution of dark matter in the mitogenome of seed beetles.

Animal mitogenomes are generally thought of as being economic and optimized for rapid replication and transcription. We use long-read sequencing technology to assemble the remarkable mitogenomes of four species of seed beetles. These are the largest circular mitogenomes ever assembled in insects, ranging from 24,496 to 26,613?bp in total length, and are exceptional in that some 40% consists of non-coding DNA. The size expansion is due to two very long intergenic spacers (LIGSs), rich in tandem repeats. The two LIGSs are present in all species but vary greatly in length (114-10,408?bp), show very low sequence similarity, divergent tandem repeat motifs, a very high AT content and concerted length evolution. The LIGSs have been retained for at least some 45 my but must have undergone repeated reductions and expansions, despite strong purifying selection on protein coding mtDNA genes. The LIGSs are located in two intergenic sites where a few recent studies of insects have also reported shorter LIGSs (>200?bp). These sites may represent spaces that tolerate neutral repeat array expansions or, alternatively, the LIGSs may function to allow a more economic translational machinery. Mitochondrial respiration in adult seed beetles is based almost exclusively on fatty acids, which reduces the need for building complex I of the oxidative phosphorylation pathway (NADH dehydrogenase). One possibility is thus that the LIGSs may allow depressed transcription of NAD genes. RNA sequencing showed that LIGSs are partly transcribed and transcriptional profiling suggested that all seven mtDNA NAD genes indeed show low levels of transcription and co-regulation of transcription across sexes and tissues.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.