Thanks to a recent spate of sequencing projects, the Hemiptera are the first hemimetabolous insect order to achieve a critical mass of species with sequenced genomes, establishing the basis for comparative genomics of the bugs. However, as the most speciose hemimetabolous order, there is still a vast swathe of the hemipteran phylogeny that awaits genomic representation across subterranean, terrestrial, and aquatic habitats, and with lineage-specific and developmentally plastic cases of both wing polyphenisms and flightlessness. In this review, we highlight opportunities for taxonomic sampling beyond obvious pest species candidates, motivated by intriguing biological features of certain groups as well as…
Background: Leptopilina boulardi is a specialist parasitoid belonging to the order Hymenoptera, which attacks the larval stages of Drosophila. The Leptopilina genus has enormous value in the biological control of pests as well as in understanding several aspects of host-parasitoid biology. However, none of the members of Figitidae family has their genomes sequenced. In order to improve the understanding of the parasitoid wasps by generating genomic resources, we sequenced the whole genome of L. boulardi. Findings: Here, we report a high quality genome of L. boulardi, assembled from 70Gb of Illumina reads and 10.5Gb of PacBio reads, forming a total…
Supergenes consist of co-adapted loci that segregate together and are associated with adaptive traits. In the fire ant Solenopsis invicta, two ‘social’ supergene variants regulate differences in colony queen number and other traits. Suppressed recombination in this system is maintained, in part, by a greater than 9 Mb inversion, but the supergene is larger. Has the supergene in S. invicta undergone multiple large inversions? The initial gene content of the inverted allele of a supergene would be the same as that of the wild-type allele. So, how did the inversion increase in frequency? To address these questions, we cloned one…
Symbioses between bacteria and insects are often associated with changes in important biological traits that can significantly affect host fitness. To a large extent, studies of these interactions have been based on physiological changes or induced phenotypes in the host, and the genetic mechanisms by which symbionts interact with their hosts have only recently become better understood. Learning about symbionts has been challenging in part due to difficulties such as obtaining enough high quality genomic material for high throughput sequencing technology, especially for symbionts present in low titers, and in small or difficult to rear non-model hosts. Here we introduce…
Individual organisms are linked to their communities and ecosystems via metabolic activities. Metabolic exchanges and co-dependencies have long been suggested to have a pivotal role in determining community structure. In phloem-feeding insects such metabolic interactions with bacteria enable complementation of their deprived nutrition. The phloem-feeding whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) harbors an obligatory symbiotic bacterium, as well as varying combinations of facultative symbionts. This well-defined bacterial community in B. tabaci serves here as a case study for a comprehensive and systematic survey of metabolic interactions within the bacterial community and their associations with documented occurrences of bacterial combinations. We first…
Diverse insects are associated with ancient bacterial symbionts, whose genomes have often suffered drastic reduction and degeneration. In extreme cases, such symbiont genomes seem almost unable to sustain the basic cellular functioning, which comprises an open question in the evolution of symbiosis. Here, we report an insect group wherein an ancient symbiont lineage suffering massive genome erosion has experienced recurrent extinction and replacement by host-associated pathogenic microbes. Cicadas are associated with the ancient bacterial co-obligate symbionts Sulcia and Hodgkinia, whose streamlined genomes are specialized for synthesizing essential amino acids, thereby enabling the host to live on plant sap. However, our…
How genetic information is modified to generate phenotypic variation within a species is one of the central questions in evolutionary biology. Here we focus on the striking intraspecific diversity of >200 aposematic elytral (forewing) colour patterns of the multicoloured Asian ladybird beetle, Harmonia axyridis, which is regulated by a tightly linked genetic locus h. Our loss-of-function analyses, genetic association studies, de novo genome assemblies, and gene expression data reveal that the GATA transcription factor gene pannier is the major regulatory gene located at the h locus, and suggest that repeated inversions and cis-regulatory modifications at pannier led to the expansion…
Aedes aegypti is the principal vector of several important arboviruses. Among the methods of vector control to limit transmission of disease are genetic strategies that involve the release of sterile or genetically modified non-biting males, which has generated interest in manipulating mosquito sex ratios. Sex determination in Ae. aegypti is controlled by a non-recombining Y chromosome-like region called the M locus, yet characterisation of this locus has been thwarted by the repetitive nature of the genome. In 2015, an M locus gene named Nix was identified that displays the qualities of a sex determination switch.With the use of a whole-genome…
The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable…
Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial…
The process of speciation involves whole genome differentiation by overcoming gene flow between diverging populations. We have ample knowledge which evolutionary forces may cause genomic differentiation, and several speciation models have been proposed to explain the transition from genetic to genomic differentiation. However, it is still unclear what are critical conditions enabling genomic differentiation in nature. The Fall armyworm, Spodoptera frugiperda, is observed as two sympatric strains that have different host-plant ranges, suggesting the possibility of ecological divergent selection. In our previous study, we observed that these two strains show genetic differentiation across the whole genome with an unprecedentedly low…
Although high-throughput sequencers (HTS) have largely displaced their Sanger counterparts, the short read lengths and high error rates of most platforms constrain their utility for amplicon sequencing. The present study tests the capacity of single molecule, real-time (SMRT) sequencing implemented on the SEQUEL platform to overcome these limitations, employing 658 bp amplicons of the mitochondrial cytochrome c oxidase I gene as a model system.By examining templates from more than 5000 species and 20,000 specimens, the performance of SMRT sequencing was tested with amplicons showing wide variation in GC composition and varied sequence attributes. SMRT and Sanger sequences were very similar, but…
We have used whole genome paired-end Illumina sequence data to identify tandem duplications in 20 isofemale lines of Drosophila yakuba and 20 isofemale lines of D. simulans and performed genome wide validation with PacBio long molecule sequencing. We identify 1,415 tandem duplications that are segregating in D. yakuba as well as 975 duplications in D. simulans, indicating greater variation in D. yakuba. Additionally, we observe high rates of secondary deletions at duplicated sites, with 8% of duplicated sites in D. simulans and 17% of sites in D. yakuba modified with deletions. These secondary deletions are consistent with the action of…
Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens–Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n?=?44) and the complete gene of pvcsp (n?=?47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess…
Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A ‘domestic’ form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the main worldwide vector of dengue, yellow fever, and chikungunya viruses. The domestic form coexists with an ancestral, ‘forest’ form that prefers to bite non-human animals and is found along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus non-human animal odour. We further show that the evolution of preference for human odour…