Menu
October 23, 2019  |  

Identification and expression analysis of chemosensory genes in the citrus fruit fly Bactrocera (Tetradacus) minax

The citrus fruit fly Bactrocera (Tetradacus) minax is a major and devastating agricultural pest in Asian subtropical countries. Previous studies have shown that B. minax interacts with hosts via an efficient chemosensory system. However, knowledge regarding the molecular components of the B. minax chemosensory system has not yet been well established. Herein, based on our newly generated whole-genome dataset for B. minax and by comparison with the characterized genomes of 6 other fruit fly species, we identified, for the first time, a total of 25 putative odorant-binding receptors (OBPs), 4 single-copy chemosensory proteins (CSPs) and 53 candidate odorant receptors (ORs). To further survey the expression of these candidate genes, the transcriptomes from three developmental stages (larvae, pupae and adults) of B. minax and Bactrocera dorsalis were analyzed. We found that 1) at the adult developmental stage, there were 14 highly expressed OBPs (FPKM>100) in B. dorsalis and 7 highly expressed OBPs in B. minax; 2) the expression of CSP3 and CSP4 in adult B. dorsalis was higher than that in B. minax; and 3) most of the OR genes exhibited low expression at the three developmental stages in both species. This study on the identification of the chemosensory system of B. minax not only enriches the existing research on insect olfactory receptors but also provides new targets for preventative control and ecological regulation of B. minax in the future.


September 22, 2019  |  

The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility.

Ticks are of medical importance owing to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Although ticks host pathogenic bacteria, they also harbor bacterial endosymbionts that have a role in tick physiology, survival, as well as pathogen acquisition and transmission. The goal of this study was to characterize the bacterial microbiome and examine the impact of microbiome disruption on pathogen susceptibility. The bacterial microbiome of two populations of D. andersoni with historically different susceptibilities to A. marginale was characterized. In this study, the microbiome was disrupted and then ticks were exposed to A. marginale or Francisella novicida to determine whether the microbiome correlated with pathogen susceptibility. Our study showed that an increase in proportion and quantity of Rickettsia bellii in the microbiome was negatively correlated to A. marginale levels in ticks. Furthermore, a decrease in Francisella endosymbionts was associated with lower F. novicida infection levels, demonstrating a positive pathogen-endosymbiont relationship. We demonstrate that endosymbionts and pathogens have varying interactions, and suggest that microbiome manipulation may provide a possible method for biocontrol by decreasing pathogen susceptibility of ticks.


September 22, 2019  |  

PacBio full-length transcriptome profiling of insect mitochondrial gene expression.

In this study, we sequenced the first full-length insect transcriptome using the Erthesina fullo Thunberg based on the PacBio platform. We constructed the first quantitative transcription map of animal mitochondrial genomes and built a straightforward and concise methodology to investigate mitochondrial gene transcription, RNA processing, mRNA maturation and several other related topics. Most of the results were consistent with the previous studies, while to the best of our knowledge some findings were reported for the first time in this study. The new findings included the high levels of mitochondrial gene expression, the 3′ polyadenylation and possible 5′ m(7)G caps of rRNAs, the isoform diversity of 12S rRNA, the polycistronic transcripts and natural antisense transcripts of mitochondrial genes et al. These findings could challenge and enrich fundamental concepts of mitochondrial gene transcription and RNA processing, particularly of the rRNA primary (sequence) structure. The methodology constructed in this study can also be used to study gene expression or RNA processing of nuclear genomes.


September 22, 2019  |  

Candidatus Dactylopiibacterium carminicum, a nitrogen-fixing symbiont of Dactylopius cochineal insects (Hemiptera: Coccoidea: Dactylopiidae)

The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500?years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ hybridization, suggesting maternal inheritance. Bacterial genomes recovered from metagenomic data derived from whole insects or tissues both from D. coccus and from D. opuntiae were around 3.6?Mb in size. Phylogenomics showed that dactylopiibacteria constituted a closely related clade neighbor to nitrogen fixing bacteria from soil or from various plants including rice and other grass endophytes. Metabolic capabilities were inferred from genomic analyses, showing a complete operon for nitrogen fixation, biosynthesis of amino acids and vitamins and putative traits of anaerobic or microoxic metabolism as well as genes for plant interaction. Dactylopiibacterium nif gene expression and acetylene reduction activity detecting nitrogen fixation were evidenced in D. coccus hemolymph and ovaries, in congruence with the endosymbiont fluorescent in situ hybridization location. Dactylopiibacterium symbionts may compensate for the nitrogen deficiency in the cochineal diet. In addition, this symbiont may provide essential amino acids, recycle uric acid, and increase the cochineal life span.


September 22, 2019  |  

Differential expression analysis of olfactory genes based on a combination of sequencing platforms and behavioral investigations in Aphidius gifuensis.

Aphidius gifuensis Ashmead is a dominant endoparasitoid of aphids, such as Myzus persicae and Sitobion avenae, and plays an important role in controlling aphids in various habitats, including tobacco plants and wheat in China. A. gifuensis has been successfully applied for the biological control of aphids, especially M. persicae, in green houses and fields in China. The corresponding parasites, as well as its mate-searching behaviors, are subjects of considerable interest. Previous A. gifuensis transcriptome studies have relied on short-read next-generation sequencing (NGS), and the vast majority of the resulting isotigs do not represent full-length cDNA. Here, we employed a combination of NGS and single-molecule real-time (SMRT) sequencing of virgin females (VFs), mated females (MFs), virgin males (VMs), and mated males (MMs) to comprehensively study the A. gifuensis transcriptome. Behavioral responses to the aphid alarm pheromone (E-ß-farnesene, EBF) as well as to A. gifuensis of the opposite sex were also studied. VMs were found to be attracted by female wasps and MFs were repelled by male wasps, whereas MMs and VFs did not respond to the opposite sex. In addition, VFs, MFs, and MMs were attracted by EBF, while VMs did not respond. According to these results, we performed a personalized differential gene expression analysis of olfactory gene sets (66 odorant receptors, 25 inotropic receptors, 16 odorant-binding proteins, and 12 chemosensory proteins) in virgin and mated A. gifuensis of both sexes, and identified 13 candidate genes whose expression levels were highly consistent with behavioral test results, suggesting potential functions for these genes in pheromone perception.


September 22, 2019  |  

The industrial melanism mutation in British peppered moths is a transposable element.

Discovering the mutational events that fuel adaptation to environmental change remains an important challenge for evolutionary biology. The classroom example of a visible evolutionary response is industrial melanism in the peppered moth (Biston betularia): the replacement, during the Industrial Revolution, of the common pale typica form by a previously unknown black (carbonaria) form, driven by the interaction between bird predation and coal pollution. The carbonaria locus has been coarsely localized to a 200-kilobase region, but the specific identity and nature of the sequence difference controlling the carbonaria-typica polymorphism, and the gene it influences, are unknown. Here we show that the mutation event giving rise to industrial melanism in Britain was the insertion of a large, tandemly repeated, transposable element into the first intron of the gene cortex. Statistical inference based on the distribution of recombined carbonaria haplotypes indicates that this transposition event occurred around 1819, consistent with the historical record. We have begun to dissect the mode of action of the carbonaria transposable element by showing that it increases the abundance of a cortex transcript, the protein product of which plays an important role in cell-cycle regulation, during early wing disc development. Our findings fill a substantial knowledge gap in the iconic example of microevolutionary change, adding a further layer of insight into the mechanism of adaptation in response to natural selection. The discovery that the mutation itself is a transposable element will stimulate further debate about the importance of ‘jumping genes’ as a source of major phenotypic novelty.


September 22, 2019  |  

Comprehensive transcriptome analysis of Sarcophaga peregrina, a forensically important fly species.

Sarcophaga peregrina (flesh fly) is a frequently found fly species in Palaearctic, Oriental, and Australasian regions that can be used to estimate minimal postmortem intervals important for forensic investigations. Despite its forensic importance, the genome information of S. peregrina has not been fully described. Therefore, we generated a comprehensive gene expression dataset using RNA sequencing and carried out de novo assembly to characterize the S. peregrina transcriptome. We obtained precise sequence information for RNA transcripts using two different methods. Based on primary sequence information, we identified sets of assembled unigenes and predicted coding sequences. Functional annotation of the aligned unigenes was performed using the UniProt, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes databases. As a result, 26,580,352 and 83,221 raw reads were obtained using the Illumina MiSeq and Pacbio RS II Iso-Seq sequencing applications, respectively. From these reads, 55,730 contigs were successfully annotated. The present study provides the resulting genome information of S. peregrina, which is valuable for forensic applications.


September 22, 2019  |  

Quantitative profiling of Drosophila melanogaster Dscam1 isoforms reveals no changes in splicing after bacterial exposure.

The hypervariable Dscam1 (Down syndrome cell adhesion molecule 1) gene can produce thousands of different ectodomain isoforms via mutually exclusive alternative splicing. Dscam1 appears to be involved in the immune response of some insects and crustaceans. It has been proposed that the diverse isoforms may be involved in the recognition of, or the defence against, diverse parasite epitopes, although evidence to support this is sparse. A prediction that can be generated from this hypothesis is that the gene expression of specific exons and/or isoforms is influenced by exposure to an immune elicitor. To test this hypothesis, we for the first time, use a long read RNA sequencing method to directly investigate the Dscam1 splicing pattern after exposing adult Drosophila melanogaster and a S2 cell line to live Escherichia coli. After bacterial exposure both models showed increased expression of immune-related genes, indicating that the immune system had been activated. However there were no changes in total Dscam1 mRNA expression. RNA sequencing further showed that there were no significant changes in individual exon expression and no changes in isoform splicing patterns in response to bacterial exposure. Therefore our studies do not support a change of D. melanogaster Dscam1 isoform diversity in response to live E. coli. Nevertheless, in future this approach could be used to identify potentially immune-related Dscam1 splicing regulation in other host species or in response to other pathogens.


September 22, 2019  |  

Genomics and host specialization of honey bee and bumble bee gut symbionts.

Gilliamella apicola and Snodgrassella alvi are dominant members of the honey bee (Apis spp.) and bumble bee (Bombus spp.) gut microbiota. We generated complete genomes of the type strains G. apicola wkB1(T) and S. alvi wkB2(T) (isolated from Apis), as well as draft genomes for four other strains from Bombus. G. apicola and S. alvi were found to occupy very different metabolic niches: The former is a saccharolytic fermenter, whereas the latter is an oxidizer of carboxylic acids. Together, they may form a syntrophic network for partitioning of metabolic resources. Both species possessed numerous genes [type 6 secretion systems, repeats in toxin (RTX) toxins, RHS proteins, adhesins, and type IV pili] that likely mediate cell-cell interactions and gut colonization. Variation in these genes could account for the host fidelity of strains observed in previous phylogenetic studies. Here, we also show the first experimental evidence, to our knowledge, for this specificity in vivo: Strains of S. alvi were able to colonize their native bee host but not bees of another genus. Consistent with specific, long-term host association, comparative genomic analysis revealed a deep divergence and little or no gene flow between Apis and Bombus gut symbionts. However, within a host type (Apis or Bombus), we detected signs of horizontal gene transfer between G. apicola and S. alvi, demonstrating the importance of the broader gut community in shaping the evolution of any one member. Our results show that host specificity is likely driven by multiple factors, including direct host-microbe interactions, microbe-microbe interactions, and social transmission.


September 22, 2019  |  

Complete genome sequence of Endomicrobium proavitum, a free-living relative of the intracellular symbionts of termite gut flagellates (phylum Elusimicrobia).

We sequenced the complete genome of Endomicrobium proavitum strain Rsa215, the first isolate of the class Endomicrobia (phylum Elusimicrobia). It is the closest free-living relative of the endosymbionts of termite gut flagellates and thereby provides an excellent model for studying the evolutionary processes during the establishment of an intracellular symbiosis. Copyright © 2015 Zheng and Brune.


September 22, 2019  |  

The genomic and functional landscapes of developmental plasticity in the American cockroach.

Many cockroach species have adapted to urban environments, and some have been serious pests of public health in the tropics and subtropics. Here, we present the 3.38-Gb genome and a consensus gene set of the American cockroach, Periplaneta americana. We report insights from both genomic and functional investigations into the underlying basis of its adaptation to urban environments and developmental plasticity. In comparison with other insects, expansions of gene families in P. americana exist for most core gene families likely associated with environmental adaptation, such as chemoreception and detoxification. Multiple pathways regulating metamorphic development are well conserved, and RNAi experiments inform on key roles of 20-hydroxyecdysone, juvenile hormone, insulin, and decapentaplegic signals in regulating plasticity. Our analyses reveal a high level of sequence identity in genes between the American cockroach and two termite species, advancing it as a valuable model to study the evolutionary relationships between cockroaches and termites.


September 22, 2019  |  

SMRT sequencing of full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt).

This study was aimed at generating the full-length transcriptome of flea beetle Agasicles hygrophila (Selman and Vogt) using single-molecule real-time (SMRT) sequencing. Four developmental stages of A. hygrophila, including eggs, larvae, pupae, and adults were harvested for isolating total RNA. The mixed samples were used for SMRT sequencing to generate the full-length transcriptome. Based on the obtained transcriptome data, alternative splicing event, simple sequence repeat (SSR) analysis, coding sequence prediction, transcript functional annotation, and lncRNA prediction were performed. Total 9.45?Gb of clean reads were generated, including 335,045 reads of insert (ROI) and 158,085 full-length non-chimeric (FLNC) reads. Transcript clustering analysis of FLNC reads identified 40,004 consensus isoforms, including 31,015 high-quality ones. After removing redundant reads, 28,982 transcripts were obtained. Total 145 alternative splicing events were predicted. Additionally, 12,753 SSRs and 16,205 coding sequences were identified based on SSR analysis. Furthermore, 24,031 transcripts were annotated in eight functional databases, and 4,198 lncRNAs were predicted. This is the first study to perform SMRT sequencing of the full-length transcriptome of A. hygrophila. The obtained transcriptome may facilitate further exploration of the genetic data of A. hygrophila and uncover the interactions between this insect and the ecosystem.


September 22, 2019  |  

Single molecule RNA sequencing uncovers trans-splicing and improves annotations in Anopheles stephensi.

Single molecule real-time (SMRT) sequencing has recently been used to obtain full-length cDNA sequences that improve genome annotation and reveal RNA isoforms. Here, we used one such method called isoform sequencing from Pacific Biosciences (PacBio) to sequence a cDNA library from the Asian malaria mosquito Anopheles stephensi. More than 600 000 full-length cDNAs, referred to as reads of insert, were identified. Owing to the inherently high error rate of PacBio sequencing, we tested different approaches for error correction. We found that error correction using Illumina RNA sequencing (RNA-seq) generated more data than using the default SMRT pipeline. The full-length error-corrected PacBio reads greatly improved the gene annotation of Anopheles stephensi: 4867 gene models were updated and 1785 alternatively spliced isoforms were added to the annotation. In addition, six trans-splicing events, where exons from different primary transcripts were joined together, were identified in An. stephensi. All six trans-splicing events appear to be conserved in Culicidae, as they are also found in Anopheles gambiae and Aedes aegypti. The proteins encoded by trans-splicing events are also highly conserved and the orthologues of these proteins are cis-spliced in outgroup species, indicating that trans-splicing may arise as a mechanism to rescue genes that broke up during evolution.© 2017 The Royal Entomological Society.


September 22, 2019  |  

Contemporary evolution of a Lepidopteran species, Heliothis virescens, in response to modern agricultural practices.

Adaptation to human-induced environmental change has the potential to profoundly influence the genomic architecture of affected species. This is particularly true in agricultural ecosystems, where anthropogenic selection pressure is strong. Heliothis virescens primarily feeds on cotton in its larval stages, and US populations have been declining since the widespread planting of transgenic cotton, which endogenously expresses proteins derived from Bacillus thuringiensis (Bt). No physiological adaptation to Bt toxin has been found in the field, so adaptation in this altered environment could involve (i) shifts in host plant selection mechanisms to avoid cotton, (ii) changes in detoxification mechanisms required for cotton-feeding vs. feeding on other hosts or (iii) loss of resistance to previously used management practices including insecticides. Here, we begin to address whether such changes occurred in H. virescens populations between 1997 and 2012, as Bt-cotton cultivation spread through the agricultural landscape. For our study, we produced an H. virescens genome assembly and used this in concert with a ddRAD-seq-enabled genome scan to identify loci with significant allele frequency changes over the 15-year period. Genetic changes at a previously described H. virescens insecticide target of selection were detectable in our genome scan and increased our confidence in this methodology. Additional loci were also detected as being under selection, and we quantified the selection strength required to elicit observed allele frequency changes at each locus. Potential contributions of genes near loci under selection to adaptive phenotypes in the H. virescens cotton system are discussed.© 2017 John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.