September 22, 2019  |  

Genetic and molecular basis of the immune system in the brachiopod Lingula anatina.

The extension of comparative immunology to non-model systems, such as mollusks and annelids, has revealed an unexpected diversity in the complement of immune receptors and effectors among evolutionary lineages. However, several lophotrochozoan phyla remain unexplored mainly due to the lack of genomic resources. The increasing accessibility of high-throughput sequencing technologies offers unique opportunities for extending genome-wide studies to non-model systems. As a result, the genome-based study of the immune system in brachiopods allows a better understanding of the alternative survival strategies developed by these immunologically neglected phyla. Here we present a detailed overview of the molecular components of the immune system identified in the genome of the brachiopod Lingula anatina. Our findings reveal conserved intracellular signaling pathways as well as unique strategies for pathogen detection and killing in brachiopods. Copyright © 2017 Elsevier Ltd. All rights reserved.


July 19, 2019  |  

Diversity of the TLR4 immunity receptor in Czech native cattle breeds revealed using the Pacific Biosciences sequencing platform.

The allelic variants of immunity genes in historical breeds likely reflect local infection pressure and therefore represent a reservoir for breeding. Screening to determine the diversity of the Toll-like receptor gene TLR4 was conducted in two conserved cattle breeds: Czech Red and Czech Red Pied. High-throughput sequencing of pooled PCR amplicons using the PacBio platform revealed polymorphisms, which were subsequently confirmed via genotyping techniques. Eight SNPs found in coding and adjacent regions were grouped into 18 haplotypes, representing a significant portion of the known diversity in the global breed panel and presumably exceeding diversity in production populations. Notably, the ancient Czech Red breed appeared to possess greater haplotype diversity than the Czech Red Pied breed, a Simmental variant, although the haplotype frequencies might have been distorted by significant crossbreeding and bottlenecks in the history of Czech Red cattle. The differences in haplotype frequencies validated the phenotypic distinctness of the local breeds. Due to the availability of Czech Red Pied production herds, the effect of intensive breeding on TLR diversity can be evaluated in this model. The advantages of the Pacific Biosciences technology for the resequencing of long PCR fragments with subsequent direct phasing were independently validated.


July 7, 2019  |  

The complete genome sequence of Exiguobacterium arabatum W-01 reveals potential probiotic functions.

Shrimp is extensively cultured worldwide. Shrimp farming is suffering from a variety of diseases. Probiotics are considered to be one of the effective methods to prevent and cure shrimp diseases. Exiguobacterium arabatum W-01, a gram-positive and orange-pigmented bacterium, was isolated from the intestine of a healthy Penaeus vannamei specimen. Whole-genome sequencing revealed a genome of 2,914,854 bp, with 48.02% GC content. In total, 3,083 open reading frames (ORFs) were identified, with an average length of 843.98 bp and a mean GC content of 48.11%, accounting for 89.27% of the genome. Among these ORFs, 2,884 (93.5%) genes were classified into Clusters of Orthologous Groups (COG) families comprising 21 functional categories, and 1,650 ORFs were classified into 83 functional Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. A total of 27 rRNA operons and 68 tRNAs were identified, with all 20 amino acids represented. In addition, 91 genomic islands, 68 potential prophages, and 33 tandem repeats, but no clustered regularly interspaced short palindromic repeats (CRISPRs), were found. No resistance genes and only one virulence gene were identified. Among the 150 secreted proteins of E. arabatum W-01, a variety of transport system substrate-binding proteins, enzymes, and biosynthetic proteins, which play important roles in the uptake and metabolism of nutrients, were found. Two adherence-related protein genes and 31 flagellum-related protein genes were also identified. Taken together, these results indicate potential probiotic functions for E. arabatum W-01.© 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


July 7, 2019  |  

Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae.

Antibiotic resistance is a major public health threat, further complicated by unexplained treatment failures caused by bacteria that appear antibiotic susceptible. We describe an Enterobacter cloacae isolate harbouring a minor subpopulation that is highly resistant to the last-line antibiotic colistin. This subpopulation was distinct from persisters, became predominant in colistin, returned to baseline after colistin removal and was dependent on the histidine kinase PhoQ. During murine infection, but in the absence of colistin, innate immune defences led to an increased frequency of the resistant subpopulation, leading to inefficacy of subsequent colistin therapy. An isolate with a lower-frequency colistin-resistant subpopulation similarly caused treatment failure but was misclassified as susceptible by current diagnostics once cultured outside the host. These data demonstrate the ability of low-frequency bacterial subpopulations to contribute to clinically relevant antibiotic resistance, elucidating an enigmatic cause of antibiotic treatment failure and highlighting the critical need for more sensitive diagnostics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.