June 1, 2021  |  

Complete HIV-1 genomes from single molecules: Diversity estimates in two linked transmission pairs using clustering and mutual information.

We sequenced complete HIV-1 genomes from single molecules using Single Molecule, Real- Time (SMRT) Sequencing and derive de novo full-length genome sequences. SMRT sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. We detail mathematical techniques used in viral variant subspecies identification including clustering distance metrics and mutual information. Sequencing was performed in order to better understand the relationships between the specific sequences of transmitted viruses in linked transmission pairs. Samples representing HIV transmission pairs were selected from the Zambia Emory HIV Research Project (Lusaka, Zambia) and sequenced. We examine Single Genome Amplification (SGA) prepped samples and samples containing complex mixtures of genomes. Whole genome consensus estimates for each of the samples were made. Genome reads were clustered using a simple distance metric on aligned reads. Appropriate thresholds were chosen to yield distinct clusters of HIV genomes within samples. Mutual information between columns in the genome alignments was used to measure dependence. In silico mixtures of reads from the SGA samples were made to simulate samples containing exactly controlled complex mixtures of genomes and our clustering methods were applied to these complex mixtures. SMRT Sequencing data contained multiple full-length (greater than 9 kb) continuous reads for each sample. Simple whole genome consensus estimates easily identified transmission pairs. The clustering of the genome reads showed diversity differences between the samples, allowing us to characterize the diversity of the individual quasi-species comprising the patient viral populations across the full genome. Mutual information identified possible dependencies of different positions across the full HIV-1 genome. The SGA consensus genomes agreed with prior Sanger sequencing. Our clustering methods correctly segregated reads to their correct originating genome for the synthetic SGA mixtures. The results open up the potential for reference-agnostic and cost effective full genome sequencing of HIV-1.


June 1, 2021  |  

Rapid sequencing of HIV-1 genomes as single molecules from simple and complex samples.

Background: To better understand the relationships among HIV-1 viruses in linked transmission pairs, we sequenced several samples representing HIV transmission pairs from the Zambia Emory HIV Research Project (Lusaka, Zambia) using Single Molecule, Real-Time (SMRT) Sequencing. Methods: Single molecules were sequenced as full-length (9.6 kb) amplicons directly from PCR products without shearing. This resulted in multiple, fully-phased, complete HIV-1 genomes for each patient. We examined Single Genome Amplification (SGA) prepped samples, as well as samples containing complex mixtures of genomes. We detail mathematical techniques used in viral variant subspecies identification, including clustering distance metrics and mutual information, which were used to derive multiple de novo full-length genome sequences for each patient. Whole genome consensus estimates for each sample were made. Genome reads were clustered using a simple distance metric on aligned reads. Appropriate thresholds were chosen to yield distinct clusters of HIV-1 genomes within samples. Mutual information between columns in the genome alignments was used to measure dependence. In silico mixtures of reads from the SGA samples were made to simulate samples containing exactly controlled complex mixtures of genomes and our clustering methods were applied to these complex mixtures. Results: SMRT Sequencing data contained multiple full-length (>9 kb) continuous reads for each sample. Simple whole-genome consensus estimates easily identified transmission pairs. Clustering of genome reads showed diversity differences between samples, allowing characterization of the quasi-species diversity comprising the patient viral populations across the full genome. Mutual information identified possible dependencies of different positions across the full HIV-1 genome. The SGA consensus genomes agreed with prior Sanger sequencing. Our clustering methods correctly segregated reads to their correct originating genome for the synthetic SGA mixtures. Conclusions: SMRT Sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. The results open up the potential for reference-agnostic and cost effective full genome sequencing of HIV-1.


June 1, 2021  |  

Automated, non-hybrid de novo genome assemblies and epigenomes of bacterial pathogens

Understanding the genetic basis of infectious diseases is critical to enacting effective treatments, and several large-scale sequencing initiatives are underway to collect this information. Sequencing bacterial samples is typically performed by mapping sequence reads against genomes of known reference strains. While such resequencing informs on the spectrum of single nucleotide differences relative to the chosen reference, it can miss numerous other forms of variation known to influence pathogenicity: structural variations (duplications, inversions), acquisition of mobile elements (phages, plasmids), homonucleotide length variation causing phase variation, and epigenetic marks (methylation, phosphorothioation) that influence gene expression to switch bacteria from non-pathogenic to pathogenic states. Therefore, sequencing methods which provide complete, de novo genome assemblies and epigenomes are necessary to fully characterize infectious disease agents in an unbiased, hypothesis-free manner. Hybrid assembly methods have been described that combine long sequence reads from SMRT DNA sequencing with short, high-accuracy reads (SMRT (circular consensus sequencing) CCS or second-generation reads) to generate long, highly accurate reads that are then used for assembly. We have developed a new paradigm for microbial de novo assemblies in which long SMRT sequencing reads (average readlengths >5,000 bases) are used exclusively to close the genome through a hierarchical genome assembly process, thereby obviating the need for a second sample preparation, sequencing run and data set. We have applied this method to achieve closed de novo genomes with accuracies exceeding QV50 (>99.999%) to numerous disease outbreak samples, including E. coli, Salmonella, Campylobacter, Listeria, Neisseria, and H. pylori. The kinetic information from the same SMRT sequencing reads is utilized to determine epigenomes. Approximately 70% of all methyltransferase specificities we have determined to date represent previously unknown bacterial epigenetic signatures. The process has been automated and requires less than 1 day from an unknown DNA sample to its complete de novo genome and epigenome.


June 1, 2021  |  

A comparison of 454 GS FLX Ti and PacBio RS in the context of characterizing HIV-1 intra-host diversity.

PacBio 2013 User Group Meeting Presentation Slides: Lance Hepler from UC San Diego’s Center for AIDS Research used the PacBio RS to study intra-host diversity in HIV-1. He compared PacBio’s performance to that of 454® sequencer, the platform he and his team previously used. Hepler noted that in general, there was strong agreement between the platforms; where results differed, he said that PacBio data had significantly better reproducibility and accuracy. “PacBio does not suffer from local coverage loss post-processing, whereas 454 has homopolymer problems,” he noted. Hepler said they are moving away from using 454 in favor of the PacBio system.


June 1, 2021  |  

Using whole exome sequencing and bacterial pathogen sequencing to investigate the genetic basis of pulmonary non-tuberculous mycobacterial infections.

Pulmonary non-tuberculous mycobacterial (PNTM) infections occur in patients with chronic lung disease, but also in a distinct group of elderly women without lung defects who share a common body morphology: tall and lean with scoliosis, pectus excavatum, and mitral valve prolapse. In order to characterize the human host susceptibility to PNTM, we performed whole exome sequencing (WES) of 44 individuals in extended families of patients with active PNTM as well as 55 additional unrelated individuals with PNTM. This unique collection of familial cohorts in PNTM represents an important opportunity for a high yield search for genes that regulate mucosal immunity. An average of 58 million 100bp paired-end Illumina reads per exome were generated and mapped to the hg19 reference genome. Following variant detection and classification, we identified 58,422 potentially high-impact SNPs, 97.3% of which were missense mutations. Segregating variants using the family pedigrees as well as comparisons to the unrelated individuals identified multiple potential variants associated with PNTM. Validations of these candidate variants in a larger PNTM cohort are underway. In addition to WES, we sequenced the genomes of 52 mycobacterial isolates, including 9 from these PNTM patients, to integrate host PNTM susceptibility with mycobacterial genotypes and gain insights into the key factors involved in this devastating disease. These genomes were sequenced using a combination of 454, Illumina, and PacBio platforms and assembled using multiple genome assemblers. The resulting genome sequences were used to identify mycobacterial genotypes associated with virulence, invasion, and drug resistance.


June 1, 2021  |  

New discoveries from closing Salmonella genomes using Pacific Biosciences continuous long reads.

The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition, we were able to detect novel methyltransferases (MTases) by using the Pacific Biosciences kinetic score distributions showing that each serovar appears to have a novel methylation pattern. For example while all Salmonella serovars examined so far have methylase specific activity for 5’-GATC-3’/3’-CTAG-5’ and 5’-CAGAG-3’/3’-GTCTC-5’ (underlined base indicates a modification), S. Heidelberg is uniquely specific for 5’-ACCANCC-3’/3’-TGGTNGG-5’, while S. Typhimurium has uniquely methylase specific for 5′-GATCAG-3’/3′- CTAGTC-5′ sites, for the samples examined so far. We believe that this may be due to the unique environments and phages that these serotypes have been exposed to. Furthermore, our analysis identified and closed a variety of plasmids such as mobilization plasmids, antimicrobial resistance plasmids and IncX plasmids carrying a Type IV secretion system (T4SS). The VirB/D4 T4SS apparatus is important in that it assists with rapid dissemination of antibiotic resistance and virulence determinants. Presently, only limited information exists regarding the genotypic characterization of drug resistance in S. Heidelberg isolates derived from various host species. Here, we characterize two S. Heidelberg outbreak isolates from two different outbreaks. Both isolates contain the IncX plasmid of approximately 35 kb, and carried the genes virB1, virB2, virB3/4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virD2, and virD4, that are associated with the T4SS. In addition, the outbreak isolate associated with ground turkey carries a 4,473 bp mobilization plasmid and an incompatibility group (Inc) I1 antimicrobial resistance plasmid encoding resistance to gentamicin (aacC2), beta-lactam (bl2b_tem), streptomycin (aadAI) and tetracycline (tetA, tetR) while the outbreak isolate associated with chicken breast carries the IncI1 plasmid encoding resistance to gentamicin (aacC2), streptomycin (aadAI) and sulfisoxazole (sul1). Using this new technology we explored the genetic elements present in resistant pathogens which will achieve a better understanding of the evolution of Salmonella.


June 1, 2021  |  

Characterization of NNRTI mutations in HIV-1 RT using Single Molecule, Real-Time SMRT Sequencing.

Background: Genotypic testing of chronic viral infections is an important part of patient therapy and requires assays capable of detecting the entire spectrum of viral mutations. Single Molecule, Real-Time (SMRT) sequencing offers several advantages to other sequencing technologies, including superior resolution of mixed populations and long read lengths capable of spanning entire viral protein coding regions. We examined detection sensitivity of SMRT sequencing using a mixture of HIV-1 RT gene coding regions containing single NNRTI mutations. Methodology: SMRTbell templates were prepared from PCR products generated from a prospective reference material being developed by BC Center of Excellence for HIV/AIDS, and contained a mixture of fifteen infectious viruses containing single NNRTI resistance mutations (viz V90I, K101E, K103N, V108I, E138A/G/K/Q, V179D, Y181C, Y188C, G190A/S, M230L and P236L) built upon the HIV-1LAI molecular clone. Templates were sequenced on the PacBio RS II to obtain single molecule long reads using P4/C2 chemistry, using 180 minute movie collection without stage start. The relative abundances of the mutant viruses were then estimated using codon-aware analysis methods. Results: Sequencing of these templates produced average read lengths of 5.0 KB, comprising 40,000-fold coverage across the entire amplicon per SMRT Cell. All the expected mutations in the mixture of mutant viruses were accurately identified. Frequencies of NNRTI variants estimated ranged from 0.5% to 12.5%. Conclusions: Codon analysis revealed a number of variants across the amplicon with highly consistent results across SMRT Cells. From a single SMRT Cell, variants were accurately and reliably detected down to 0.5% with simple analyses. Long polymerase reads and high accuracy reads make it possible to call variants from just a few molecules. SMRT Sequencing can identify species comprising a mixed viral population, with granularity and low cost of consumables allowing for smaller multiplexing of samples and first-in-first-out processing.


June 1, 2021  |  

Next generation sequencing of full-length HIV-1 env during primary infection.

Background: The use of next generation sequencing (NGS) to examine circulating HIV env variants has been limited due to env’s length (2.6 kb), extensive indel polymorphism, GC deficiency, and long homopolymeric regions. We developed and standardized protocols for isolation, RT-PCR amplification, single molecule real-time (SMRT) sequencing, and haplotype analysis of circulating HIV-1 env variants to evaluate viral diversity in primary infection. Methodology: HIV RNA was extracted from 7 blood plasma samples (1 mL) collected from 5 subjects (one individual sampled and sequenced at 3 time points) in the San Diego Primary Infection Cohort between 3-33 months from their estimated date of infection (EDI). Median viral load per sample was 50,118 HIV RNA copies/mL (range: 22,387-446,683). Full-length (3.2 kb) env amplicons were constructed into SMRTbell templates without shearing, and sequenced on the PacBio RS II using P4/C2 chemistry and 180 minute movie collection without stage start. To examine viral diversity in each sample, we determined haplotypes by clustering circular consensus sequences (CCS), and reconstructing a cluster consensus sequence using a partial order alignment approach. We measured sample diversity both as the mean pairwise distance among reads, and the fraction of reads containing indel polymorphisms. Results: We collected a median of 8,775 CCS reads per SMRT Cell (range: 4243-12234). A median of 7 haplotypes per subject (range: 1-55) were inferred at baseline. For the one subject with longitudinal samples analyzed, we observed an increasing number of distinct haplotypes (8 to 55 haplotypes over the course of 30 months), and an increasing mean pairwise distance among reads (from 0.8% to 1.6%, Tamura-Nei 93). We also observed significant indel polymorphism, with 16% of reads from one sample later in infection (33 months post-EDI) exhibiting deletions of more than 10% of env with respect to the reference strain, HXB2. Conclusions: This study developed a standardized NGS procedure (PacBio SMRT) to deep sequence full-length HIV RNA env variants from the circulating viral population, achieving good coverage, confirming low env diversity during primary infection that increased over time, and revealing significant indel polymorphism that highlights structural variation as important to env evolution. The long, accurate reads greatly simplified downstream bioinformatics analyses, especially haplotype phasing, increasing our confidence in the results. The sequencing methodology and analysis tools developed here could be successfully applied to any area for which full-length HIV env analysis would be useful.


June 1, 2021  |  

High-throughput analysis of full-length proviral HIV-1 genomes from PBMCs.

Background: HIV-1 proviruses in peripheral blood mononuclear cells (PBMCs) are felt to be an important reservoir of HIV-1 infection. Given that this pool represents an archival library, it can be used to study virus evolution and CD4+ T cell survival. Accurate study of this pool is burdened by difficulties encountered in sequencing a full-length proviral genome, typically accomplished by assembling overlapping pieces and imputing the full genome. Methodology: Cryopreserved PBMCs collected from a total of 8 HIV+ patients from 1997-2001 were used for genomic DNA extraction. Patients had been receiving cART for 2-8 years at the time samples were obtained. 7 patients had pVL >50 copies/mL (mean: 312,282, range: 18,372-683,400) and 1 had pVL <50. Genomic DNA was subjected to limiting dilution prior to amplification of near-full-length genomes by a newly developed nested PCR. The predicted size of the PCR product was 9.0 kb, spanning from the 5’ LTR through the 3’ LTR. Single molecules were sequenced as near-full-length amplicons directly from PCR products without shearing using commercially available P4-C2 reagents and standard protocols on a PacBio RS II instrument. Quality of the genomes was validated by clonal positive controls and synthetic mixtures. Results: Near-full-length provirus genome sequences were successfully obtained from all 8 patients as continuous long reads from single molecules. PacBio sequencing required approximately 10% of the PCR product needed for Sanger sequencing and generated 325 MB per 3-hour run including 1,800 full-length intact genome reads on average. One patient’s sample was not at a limiting dilution and analysis revealed multiple subspecies. For 8 near-fulllength provirus genomes derived from the other 7 patients, large internal deletions were noted in 2 proviruses; APOBEC-mediated hypermutations were seen in 2 proviruses; and 4 proviruses appeared to be intact genomes. All of the defective proviruses showed a complete absence of resistance mutations in either RT or protease, even after 2-8 years of cART. On the contrary, all of the intact proviruses contained evidence of ART-resistance associated mutations suggesting that they represented relatively recent variants. Conclusions: Combining a novel protocol for full-length limiting dilution amplification of proviruses with PacBio SMRT sequencing allowed for the generation of near-full-length genomes with good quality and an ability to detect minor variants at the 1-10% level. Preliminary data analyses suggest that defective proviruses may represent archival variants that persist long-term in host cells, while intact proviruses within the PBMC pool showing evidence of active virus replication may represent more recent variants.


June 1, 2021  |  

Full-length HIV-1 env deep sequencing in a donor with broadly neutralizing V1/V2 antibodies.

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibodies (bNAbs) may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined HIV-1 env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 loop region. We developed a PacBio single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics and viral escape motif evolution were interpreted in the context of the development V1/V2-targeting broadly neutralizing antibodies. Results: We collected a median of 6799 (range: 1770-14727) high quality full-length HIV env circular consensus sequences (CCS) per SMRT Cell, per time point. Using only CCS reads comprised of 6 or more passes over the HIV env insert (= 16 kb read length) ensured that our median per-base accuracy was 99.7%. A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found the cloned sequences evenly distributed among PacBio sequences. Viral escape from the V1/V2 targeted bNAbs was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40 months post-infection. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented view and ability to characterize HIV-1 env dynamics throughout the first four years of infection. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which will prove critical for increasing our understanding of how env evolution drives the development of antibody breadth.


June 1, 2021  |  

Sequencing complex mixtures of HIV-1 genomes with single-base resolution.

A large number of distinct HIV-1 genomes can be present in a single clinical sample from a patient chronically infected with HIV-1. We examined samples containing complex mixtures of near-full-length HIV-1 genomes. Single molecules were sequenced as near-full-length (9.6 kb) amplicons directly from PCR products without shearing. Mathematical analysis techniques deconvolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. We correctly estimated the originating genomes to single-base resolution along with their relative abundances for mixtures where the truth was known exactly by independent sequencing methods. Correct estimates were made even when genomes diverged by a single base. Minor abundances of 5% were reliably detected. SMRT Sequencing data contained near-full-length continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour collection time. SMRT Sequencing yields long- read sequencing results from individual DNA molecules with a rapid time-to-result. The single-molecule, full-length nature of the sequencing method allows us to estimate variant subspecies and relative abundances even from samples containing complex mixtures of genomes that differ by single bases. These results open the possibility of cost-effective full-genome sequencing of HIV-1 in mixed populations for applications such as incorporated-HIV-1 screening. In screening, genomes can differ by one to many thousands of bases and the ability to measure them can help scientifically inform treatment strategies.


June 1, 2021  |  

Full-length env deep sequencing in a donor with broadly neutralizing V1/V2 antibodies.

Background: Understanding the co-evolution of HIV populations and broadly neutralizing antibody (bNAb) lineages may inform vaccine design. Novel long-read, next-generation sequencing methods allow, for the first time, full-length deep sequencing of HIV env populations. Methods: We longitudinally examined env populations (12 time points) in a subtype A infected individual from the IAVI primary infection cohort (Protocol C) who developed bNAbs (62% ID50>50 on a diverse panel of 105 viruses) targeting the V1/V2 region. We developed a Pacific Biosciences single molecule, real-time sequencing protocol to deeply sequence full-length env from HIV RNA. Bioinformatics tools were developed to align env sequences, infer phylogenies, and interrogate escape dynamics of key residues and glycosylation sites. PacBio env sequences were compared to env sequences generated through amplification and cloning. Env dynamics were interpreted in the context of the development of a V1/V2-targeting bNAb lineage isolated from the donor. Results: We collected a median of 6799 high quality full-length env sequences per timepoint (median per-base accuracy of 99.7%). A phylogeny inferred with PacBio and 100 cloned env sequences (10 time points) found cloned env sequences evenly distributed among PacBio sequences. Phylogenetic analyses also revealed a potential transient intra-clade superinfection visible as a minority variant (~5%) at 9 months post-infection (MPI), and peaking in prevalence at 12MPI (~64%), just preceding the development of heterologous neutralization. Viral escape from the bNAb lineage was evident at V2 positions 160, 166, 167, 169 and 181 (HxB2 numbering), exhibiting several distinct escape pathways by 40MPI. Conclusions: Our PacBio full-length env sequencing method allowed unprecedented characterization of env dynamics and revealed an intra-clade superinfection that was not detected through conventional methods. The importance of superinfection in the development of this donor’s V1/V2-directed bNAb lineage is under investigation. Longitudinal full-length env deep sequencing allows accurate phylogenetic inference, provides a detailed picture of escape dynamics in epitope regions, and can identify minority variants, all of which may prove useful for understanding how env evolution can drive the development of antibody breadth.


June 1, 2021  |  

High-accuracy, single-base resolution of near-full-length HIV genomes.

Background: The HIV-1 proviral reservoir is incredibly stable, even while undergoing antiretroviral therapy, and is seen as the major barrier to HIV-1 eradication. Identifying and comprehensively characterizing this reservoir will be critical to achieving an HIV cure. Historically, this has been a tedious and labor intensive process, requiring high-replicate single-genome amplification reactions, or overlapping amplicons that are then reconstructed into full-length genomes by algorithmic imputation. Here, we present a deep sequencing and analysis method able to determine the exact identity and relative abundances of near-full-length HIV genomes from samples containing mixtures of genomes without shearing or complex bioinformatic reconstruction. Methods: We generated clonal near-full-length (~9 kb) amplicons derived from single genome amplification (SGA) of primary proviral isolates or PCR of well-documented control strains. These clonal products were mixed at various abundances and sequenced as near-full-length (~9 kb) amplicons without shearing. Each mixture yielded many near-full-length HIV-1 reads. Mathematical analysis techniques resolved the complex mixture of reads into estimates of distinct near-full-length viral genomes with their relative abundances. Results: Single Molecule, Real-Time (SMRT) Sequencing data contained near-full-length (~9 kb) continuous reads for each sample including some runs with greater than 10,000 near-full-length-genome reads in a three-hour sequencing run. Our methods correctly recapitulated exactly the originating genomes at a single-base resolution and their relative abundances in both mixtures of clonal controls and SGAs, and these results were validated using independent sequencing methods. Correct resolution was achieved even when genomes differed only by a single base. Minor abundances of 5% were reliably detected. Conclusions: SMRT Sequencing yields long-read sequencing results from individual DNA molecules, a rapid time-to-result. The single-molecule, full-length nature of this sequencing method allows us to estimate variant subspecies and relative abundances with single-nucleotide resolution. This method allows for reference-agnostic and cost-effective full-genome sequencing of HIV-1, which could both further our understanding of latent infection and develop novel and improved tools for quantifying HIV provirus, which will be critical to cure HIV.


June 1, 2021  |  

Profiling metagenomic communities using circular consensus and Single Molecule, Real-Time Sequencing.

There are many sequencing-based approaches to understanding complex metagenomic communities spanning targeted amplification to whole-sample shotgun sequencing. While targeted approaches provide valuable data at low sequencing depth, they are limited by primer design and PCR amplification. Whole-sample shotgun experiments generally use short-read, second-generation sequencing, which results in data processing difficulties. For example, reads less than 1 kb in length will likely not cover a complete gene or region of interest, and will require assembly. This not only introduces the possibility of incorrectly combining sequence from different community members, it requires a high depth of coverage. As such, rare community members may not be represented in the resulting assembly. Circular-consensus, single molecule, real-time (SMRT) Sequencing reads in the 1-2 kb range, with >99% accuracy can be efficiently generated for low amounts of input DNA. 10 ng of input DNA sequenced in 4 SMRT Cells would generate >100,000 such reads. While throughput is low compared to second-generation sequencing, the reads are a true random sampling of the underlying community, since SMRT Sequencing has been shown to have no sequence-context bias. Long read lengths mean that that it would be reasonable to expect a high number of the reads to include gene fragments useful for analysis.


June 1, 2021  |  

Long-read assembly of the Aedes aegypti Aag2 cell line genome resolves ancient endogenous viral elements

Transmission of arboviruses such as Dengue Virus by Aedes aegypti causes debilitating disease across the globe. Disease in humans can include severe acute symptoms such as hemorrhagic fever and organ failure, but mosquitoes tolerate high titers of virus in a persistent infection. The mechanisms responsible for this viral tolerance are unclear. Recent publications highlighted the integration of genetic material from non-retroviral RNA viruses into the genome of the host during infection that relies upon endogenous retro-transcriptase activity from transposons. These endogenous viral elements (EVEs) found in the genome are predicted to be ancient, and at least some EVEs are under purifying selection, suggesting they are beneficial to the host. To characterize EVE biogenesis in a tractable system, we sequenced the Ae. aegypti cell line, Aag2, to 58-fold coverage and present a de novo assembly of the genome. The assembly contains 1.7 Gb of genomic and 255 Mb of alternative haplotype specific sequence, consisting of contigs with a N50 of 1.4 Mb; a value that, when compared with other assemblies of the Aedes genus, is from 1-3 orders of magnitude longer. The Aag2 genome is highly repetitive (70%), most of which is classified as transposable elements (60%). We identify EVEs in the genome homologous to a range of extant viruses, many of which cluster in these regions of repetitive DNA. The contiguous assembly allows for more comprehensive identification of the transposable elements and EVEs that are most likely to be lost in assemblies lacking the read length of SMRT Sequencing.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.