The UK’s National Collection of Type Cultures (NCTC) is a unique collection of more than 5,000 expertly preserved and authenticated bacterial cultures, many of historical significance. Founded in 1920, NCTC is the longest established collection of its type anywhere in the world, with a history of its own that has reflected — and contributed to — the evolution of microbiology for more than 100 years.
Our understanding of microbiology has evolved enormously over the last 150 years. Few institutions have witnessed our collective progress more closely than the National Collection of Type Cultures (NCTC). In fact, the collection itself is a record of the many milestones microbiologists have crossed, building on the discoveries of those who came before. To date, 60% of NCTC’s historic collection now has a closed, finished reference genome, thanks to PacBio Single Molecule, Real- Time (SMRT) Sequencing. We are excited to be their partner in crossing this latest milestone on their quest to improve human and animal health by understanding the…
With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel Systems, you can affordably assemble reference-quality microbial genomes that are >99.999% (Q50) accurate.
Discover the benefits of HiFi reads and learn how highly accurate long-read sequencing provides a single technology solution across a range of applications.
Learn why it is critically important to understand accuracy in DNA sequencing to distinguish important biological information from sequencing errors.
Learn how highly accurate long-read sequencing from the Sequel IIe Systems delivers data you can trust for advanced biological insights across a range of applications.
Learn how Single Molecule, Real-Time (SMRT) Sequencing and the Sequel IIe System and will accelerate your research by delivering highly accurate long reads to provide the most comprehensive view of genomes, transcriptomes and epigenomes.
With SMRT Link you can unlock the power of PacBio Single Molecule, Real-Time (SMRT) Sequencing using our portfolio of software tools designed to set up and monitor sequencing runs, review performance metrics, analyze, visualize, and annotate your sequencing data.
Highly accurate long reads – HiFi reads – with single-molecule resolution make Single Molecule, Real-Time (SMRT) Sequencing ideal for full-length 16S rRNA sequencing, shotgun metagenomic profiling, and metagenome assembly.
This documentary film features the wave of cutting-edge technologies that now provide the opportunity to create predictive models of living systems, and gain wisdom about the fundamental nature of life itself. The potential impact for humanity is immense: from fighting complex diseases such as cancer, enabling proactive surveillance of virulent pathogens, and increasing food crop production.
Bart Weimer, a professor at the University of California, Davis, who is leading the 100K Foodborne Pathogen Genome Project, talks about using PacBio sequencing to produce long reads for microbial genomes as well as to study how bacteria use epigenetics to regulate gene expression.
Ellen Paxinos, a scientist at PacBio, shares her AGBT poster on work done in collaboration with reference lab Monogram Biosciences using Single Molecule, Real-Time (SMRT) sequencing to detect minor species and variants in HCV. Using two genotypes mixed together, the team was able to detect variants down to 1% and to identify both viral haplotypes from the data. Paxinos says the study is a model for looking at genomic variation in chronic viral infection.
Ulf Gyllensten speaks about advances in screening for HPV, his predictions for the widespread use of genome sequencing in the clinic, and applications using Single Molecule, Real-Time (SMRT) Sequencing for human genome studies.