X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Wednesday, October 21, 2020

Application Brief: Variant detection using whole genome sequencing with HiFi reads – Best Practices

With highly accurate long reads (HiFi reads) from the Sequel II System, powered by Single Molecule, Real-Time (SMRT) Sequencing technology, you can comprehensively detect variants in a human genome. HiFi reads provide high precision and recall for single nucleotide variants (SNVs), indels, structural variants (SVs), and copy number variants (CNVs), including in difficult-to-map repetitive regions.

Read More »

Wednesday, February 26, 2020

Joint calling and PacBio SMRT Sequencing for indel and structural variant detection in populations

Fast and effective variant calling algorithms have been crucial to the successful application of DNA sequencing in human genetics. In particular, joint calling – in which reads from multiple individuals are pooled to increase power for shared variants – is an important tool for population surveys of variation. Joint calling was applied by the 1000 Genomes Project to identify variants across many individuals each sequenced to low coverage (about 5-fold). This approach successfully found common small variants, but broadly missed structural variants and large indels for which short-read sequencing has limited sensitivity. To support use of large variants in rare…

Read More »

Friday, July 19, 2019

An incomplete understanding of human genetic variation.

Deciphering the genetic basis of human disease requires a comprehensive knowledge of genetic variants irrespective of their class or frequency. Although an impressive number of human genetic variants have been catalogued, a large fraction of the genetic difference that distinguishes two human genomes is still not understood at the base-pair level. This is because the emphasis has been on single-nucleotide variation as opposed to less tractable and more complex genetic variants, including indels and structural variants. The latter, we propose, will have a large impact on human phenotypes but require a more systematic assessment of genomes at deeper coverage and…

Read More »

Sunday, July 7, 2019

BreakSeek: a breakpoint-based algorithm for full spectral range INDEL detection.

Although recent developed algorithms have integrated multiple signals to improve sensitivity for insertion and deletion (INDEL) detection, they are far from being perfect and still have great limitations in detecting a full size range of INDELs. Here we present BreakSeek, a novel breakpoint-based algorithm, which can unbiasedly and efficiently detect both homozygous and heterozygous INDELs, ranging from several base pairs to over thousands of base pairs, with accurate breakpoint and heterozygosity rate estimations. Comprehensive evaluations on both simulated and real datasets revealed that BreakSeek outperformed other existing methods on both sensitivity and specificity in detecting both small and large INDELs,…

Read More »

Sunday, July 7, 2019

The challenges and importance of structural variation detection in livestock.

Recent studies in humans and other model organisms have demonstrated that structural variants (SVs) comprise a substantial proportion of variation among individuals of each species. Many of these variants have been linked to debilitating diseases in humans, thereby cementing the importance of refining methods for their detection. Despite progress in the field, reliable detection of SVs still remains a problem even for human subjects. Many of the underlying problems that make SVs difficult to detect in humans are amplified in livestock species, whose lower quality genome assemblies and incomplete gene annotation can often give rise to false positive SV discoveries.…

Read More »

Sunday, July 7, 2019

An improved genome assembly uncovers prolific tandem repeats in Atlantic cod.

The first Atlantic cod (Gadus morhua) genome assembly published in 2011 was one of the early genome assemblies exclusively based on high-throughput 454 pyrosequencing. Since then, rapid advances in sequencing technologies have led to a multitude of assemblies generated for complex genomes, although many of these are of a fragmented nature with a significant fraction of bases in gaps. The development of long-read sequencing and improved software now enable the generation of more contiguous genome assemblies.By combining data from Illumina, 454 and the longer PacBio sequencing technologies, as well as integrating the results of multiple assembly programs, we have created…

Read More »

Sunday, July 7, 2019

The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms.

Tung tree (Vernicia fordii) is an economically important tree widely cultivated for industrial oil production in China. To better understand the molecular basis of tung tree chloroplasts, we sequenced and characterized its genome using PacBio RS II sequencing platforms. The chloroplast genome was sequenced with 161,528?bp in length, composed with one pair of inverted repeats (IRs) of 26,819?bp, which were separated by one small single copy (SSC; 18,758?bp) and one large single copy (LSC; 89,132?bp). The genome contains 114 genes, coding for 81 protein, four ribosomal RNAs and 29 transfer RNAs. An expansion with integration of an additional rps19 gene…

Read More »

Sunday, July 7, 2019

Zinc resistance within swine associated methicillin resistant staphylococcus aureus (MRSA) Isolates in the USA is associated with MLST lineage.

Zinc resistance in livestock-associated methicillin resistant Staphylococcus aureus (LA-MRSA) sequence type (ST) 398 is primarily mediated by the czrC gene co-located with the mecA gene, encoding methicillin resistance, within the type V SCCmec element. Because czrC and mecA are located within the same mobile genetic element, it has been suggested that the use of in feed zinc as an antidiarrheal agent has the potential to contribute to the emergence and spread of MRSA in swine through increased selection pressure to maintain the SCCmec element in isolates obtained from pigs. In this study we report the prevalence of the czrC gene…

Read More »

Sunday, July 7, 2019

Population genomics of picophytoplankton unveils novel chromosome hypervariability.

Tiny photosynthetic microorganisms that form the picoplankton (between 0.3 and 3 µm in diameter) are at the base of the food web in many marine ecosystems, and their adaptability to environmental change hinges on standing genetic variation. Although the genomic and phenotypic diversity of the bacterial component of the oceans has been intensively studied, little is known about the genomic and phenotypic diversity within each of the diverse eukaryotic species present. We report the level of genomic diversity in a natural population of Ostreococcus tauri (Chlorophyta, Mamiellophyceae), the smallest photosynthetic eukaryote. Contrary to the expectations of clonal evolution or cryptic…

Read More »

Subscribe for blog updates:

Archives