X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Monday, April 27, 2020

Application Brief: No-Amp targeted sequencing – Best Practices

With the PacBio no-amplification (No-Amp) targeted sequencing method, you can now sequence through previously inaccessible regions of the genome to provide base-level resolution of disease-causing repeat expansions. By combining the CRISPR/Cas9 enrichment method with Single Molecule, Real-Time (SMRT) Sequencing on the Sequel Systems you are no longer limited by hard-to-amplify targets.

Read More »

Monday, March 30, 2020

ASHG PacBio Workshop: Long-read sequencing for disease genome analysis: Our experiences

In this presentation, Naomichi Matsumoto from Yokohama City University speaks about the use of SMRT Sequencing to solve Mendelian diseases, including the story of how his lab discovered a 12.4 kb structural variant that’s responsible for progressive myoclonic epilepsy in two siblings. He also reports progress in understanding repeat expansion disorders by pairing SMRT Sequencing with new analysis tools designed to highlight repetitive areas.

Read More »

Monday, March 30, 2020

ASHG PacBio Workshop: Long-read sequencing in oncology and population research: Perspectives and opportunities

In this presentation, Shawn Levy from the HudsonAlpha Institute for Biotechnology and HudsonAlpha Discovery offers a look at his team’s early access experience with the Sequel II System. Recent work includes a project designed to improve sequencing results from FFPE samples with long-read data. The protocol is still being optimized, but preliminary results indicate that SMRT Sequencing improves the quality of data that can be produced from these highly degraded samples. Looking ahead, Levy’s team will be using SMRT Sequencing to generate about 7,000 long-read genome assemblies for the All of Us program.

Read More »

Wednesday, February 26, 2020

Beyond Contiguity: Evaluating the accuracy of de novo genome assemblies

HiFi reads (>99% accurate, 15-20 kb) from the PacBio Sequel II System consistently provide complete and contiguous genome assemblies. In addition to completeness and contiguity, accuracy is of critical importance, as assembly errors complicate downstream analysis, particularly by disrupting gene frames. Metrics used to assess assembly accuracy include: 1) in-frame gene count, 2) kmer consistency, and 3) concordance to a benchmark, where discordances are interpreted as assembly errors. Genome in a Bottle (GIAB) provides a benchmark for the human genome with estimated accuracy of 99.9999% (Q60). Concordance for human HiFi assemblies exceeds Q50, which provides excellent genomes for downstream analysis,…

Read More »

Monday, June 29, 2015

Human Genome Sequenced without Cloning Steps

A collaboration of scientists led by researchers from Icahn School of Medicine at Mt. Sinai has created a comprehensive analysis of a diploid human genome using two complementary single DNA molecule methods for sequencing and genome mapping, and without the need for any DNA amplification techniques.

Read More »

Monday, August 25, 2014

Updates from the Genome in a Bottle Consortium

Justin Zook of the National Institute of Standards and Technology (NIST) discussed the progress and future goals of the Genome in a Bottle project, which aims to create near-perfectly characterized human genome sequences for use as reference standards.

Read More »

Subscribe for blog updates:

Archives