X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Potential probiotic-associated traits revealed from completed high quality genome sequence of Lactobacillus fermentum 3872.

The article provides an overview of the genomic features of Lactobacillus fermentum strain 3872. The genomic sequence reported here is one of three L. fermentum genome sequences completed to date. Comparative genomic analysis allowed the identification of genes that may be contributing to enhanced probiotic properties of this strain. In particular, the genes encoding putative mucus binding proteins, collagen-binding proteins, class III bacteriocin, as well as exopolysaccharide and prophage-related genes were identified. Genes related to bacterial aggregation and survival under harsh conditions in the gastrointestinal tract, along with the genes required for vitamin production were also found.

Read More »

Sunday, July 7, 2019

Genome sequence of enterotoxigenic Escherichia coli strain FMU073332.

Enterotoxigenic Escherichia coli (ETEC) is an important cause of bacterial diarrheal illness, affecting practically every population worldwide, and was estimated to cause 120,800 deaths in 2010. Here, we report the genome sequence of ETEC strain FMU073332, isolated from a 25-month-old girl from Tlaltizapán, Morelos, México. Copyright © 2017 Saldaña-Ahuactzi et al.

Read More »

Sunday, July 7, 2019

Genome sequences for Streptomyces spp. isolated from disease-suppressive soils and long-term ecological research sites.

We report here the high-quality genome sequences of three Streptomyces spp. isolated as part of a long-term study of microbial soil ecology. Streptomyces sp. strain GS93-23 was isolated from naturally disease-suppressive soil (DSS) in Grand Rapids, MN, and Streptomyces sp. strains S3-4 and 3211-3 were isolated from experimental plots in the Cedar Creek Ecosystem Science Reserve (CCESR). Copyright © 2017 Heinsch et al.

Read More »

Sunday, July 7, 2019

High-quality draft genome sequences of four lignocellulose-degrading bacteria isolated from Puerto Rican forest soil: Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp.

Here, we report the high-quality draft genome sequences of four phylogenetically diverse lignocellulose-degrading bacteria isolated from tropical soil (Gordonia sp., Paenibacillus sp., Variovorax sp., and Vogesella sp.) to elucidate the genetic basis of their ability to degrade lignocellulose. These isolates may provide novel enzymes for biofuel production. Copyright © 2017 Woo et al.

Read More »

Sunday, July 7, 2019

Improved high-quality draft genome sequence and annotation of Burkholderia contaminans LMG 23361T.

Burkholderia contaminans LMG 23361 is the type strain of the species isolated from the milk of a dairy sheep with mastitis. Some pharmaceutical products contain disinfectants such as benzalkonium chloride (BZK) and previously we reported that B. contaminans LMG 23361(T) possesses the ability to inactivate BZK with high biodegradation rates. Here, we report an improved high-quality draft genome sequence of this strain. Copyright © 2017 Jung et al.

Read More »

Sunday, July 7, 2019

Comparative genomics of Burkholderia multivorans, a ubiquitous pathogen with a highly conserved genomic structure.

The natural environment serves as a reservoir of opportunistic pathogens. A well-established method for studying the epidemiology of such opportunists is multilocus sequence typing, which in many cases has defined strains predisposed to causing infection. Burkholderia multivorans is an important pathogen in people with cystic fibrosis (CF) and its epidemiology suggests that strains are acquired from non-human sources such as the natural environment. This raises the central question of whether the isolation source (CF or environment) or the multilocus sequence type (ST) of B. multivorans better predicts their genomic content and functionality. We identified four pairs of B. multivorans isolates,…

Read More »

Sunday, July 7, 2019

High-quality genome sequence of the radioresistant bacterium Deinococcus ficus KS 0460.

The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity…

Read More »

Sunday, July 7, 2019

The biofilm inhibitor carolacton enters Gram-negative cells: studies using a TolC-deficient strain of Escherichia coli.

The myxobacterial secondary metabolite carolacton inhibits growth of Streptococcus pneumoniae and kills biofilm cells of the caries- and endocarditis-associated pathogen Streptococcus mutans at nanomolar concentrations. Here, we studied the response to carolacton of an Escherichia coli strain that lacked the outer membrane protein TolC. Whole-genome sequencing of the laboratory E. coli strain TolC revealed the integration of an insertion element, IS5, at the tolC locus and a close phylogenetic relationship to the ancient E. coli K-12. We demonstrated via transcriptome sequencing (RNA-seq) and determination of MIC values that carolacton penetrates the phospholipid bilayer of the Gram-negative cell envelope and inhibits growth of…

Read More »

Sunday, July 7, 2019

High-quality draft genome sequence of the Thermus amyloliquefaciens type strain YIM 77409(T) with an incomplete denitrification pathway.

Thermus amyloliquefaciens type strain YIM 77409(T) is a thermophilic, Gram-negative, non-motile and rod-shaped bacterium isolated from Niujie Hot Spring in Eryuan County, Yunnan Province, southwest China. In the present study we describe the features of strain YIM 77409(T) together with its genome sequence and annotation. The genome is 2,160,855 bp long and consists of 6 scaffolds with 67.4 % average GC content. A total of 2,313 genes were predicted, comprising 2,257 protein-coding and 56 RNA genes. The genome is predicted to encode a complete glycolysis, pentose phosphate pathway, and tricarboxylic acid cycle. Additionally, a large number of transporters and enzymes for heterotrophy…

Read More »

Sunday, July 7, 2019

High-quality draft genomes from Thermus caliditerrae YIM 77777 and T. tengchongensis YIM 77401, isolates from Tengchong, China.

The draft genomes of Thermus  tengchongensis YIM 77401 and T. caliditerrae YIM 77777 are 2,562,314 and 2,218,114 bp and encode 2,726 and 2,305 predicted genes, respectively. Gene content and growth experiments demonstrate broad metabolic capacity, including starch hydrolysis, thiosulfate oxidation, arsenite oxidation, incomplete denitrification, and polysulfide reduction. Copyright © 2016 Mefferd et al.

Read More »

Sunday, July 7, 2019

High-quality permanent draft genome sequence of Ensifer sp. PC2, isolated from a nitrogen-fixing root nodule of the legume tree (Khejri) native to the Thar Desert of India.

Ensifer sp. PC2 is an aerobic, motile, Gram-negative, non-spore-forming rod that was isolated from a nitrogen-fixing nodule of the tree legume P. cineraria (L.) Druce (Khejri), which is a keystone species that grows in arid and semi-arid regions of the Indian Thar desert. Strain PC2 exists as a dominant saprophyte in alkaline soils of Western Rajasthan. It is fast growing, well-adapted to arid conditions and is able to form an effective symbiosis with several annual crop legumes as well as species of mimosoid trees and shrubs. Here we describe the features of Ensifer sp. PC2, together with genome sequence information…

Read More »

Sunday, July 7, 2019

High-quality draft genome sequences for five non-O157 Shiga toxin-producing Escherichia coli strains generated with PacBio sequencing and optical maps.

Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen. We report here the high-quality draft whole-genome sequences of five STEC strains isolated from clinical cases in the United States. This report is for STEC of serotypes O55:H7, O79:H7, O91:H14, O153:H2, and O156:H25. Copyright © 2016 Lindsey et al.

Read More »

Sunday, July 7, 2019

Use of multiple sequencing technologies to produce a high-quality genome of the fungus Pseudogymnoascus destructans, the causative agent of bat white-nose syndrome.

White-nose syndrome has recently emerged as one of the most devastating wildlife diseases recorded, causing widespread mortality in numerous bat species throughout eastern North America. Here, we present an improved reference genome of the fungal pathogen Pseudogymnoascus destructans for use in comparative genomic studies. Copyright © 2016 Drees et al.

Read More »

Sunday, July 7, 2019

High quality draft genome sequence of the type strain of Pseudomonas lutea OK2(T), a phosphate-solubilizing rhizospheric bacterium.

Pseudomonas lutea OK2(T) (=LMG 21974(T), CECT 5822(T)) is the type strain of the species and was isolated from the rhizosphere of grass growing in Spain in 2003 based on its phosphate-solubilizing capacity. In order to identify the functional significance of phosphate solubilization in Pseudomonas Plant growth promoting rhizobacteria, we describe here the phenotypic characteristics of strain OK2(T) along with its high-quality draft genome sequence, its annotation, and analysis. The genome is comprised of 5,647,497 bp with 60.15 % G?+?C content. The sequence includes 4,846 protein-coding genes and 95 RNA genes.

Read More »

1 2 3

Subscribe for blog updates:

Archives